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Abstract

J. S. Adelman, S. J. Marquis, M. G. Sabatos-DeVito and Z. Estes (2013) collected word

naming latencies from 4 participants who read 2820 words 50 times each. Their

recommendation and practice was that R2 targets set for models should take into

account subject idiosyncrasies as replicable patterns, equivalent to a subjects-as-fixed-

effects assumption. In light of an interaction involving subjects, they broke down the

interaction into individual subject data. P. Courrieu and A. Rey’s (this issue)

commentary argues that (1) single-subject data need not be more reliable than subject-

average data, and (2) anyway, treating groups of subjects as random samples leads to

valid conclusions about general mechanisms of reading. Point (1) was not part of

Adelman et al.’s claim. In this reply, we examine the consequences of using the fixed-

effect assumption. It (1) produces the correct target to check if by-items regression

models contain all necessary variables; (2) more accurately constrains cognitive

models; (3) more accurately reveals general mechanisms; and (4) can offer more

powerful tests of effects. Even when individual differences are not the primary focus

of a study, the fixed-effect analysis is often preferable to the random-effects analysis.
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We (Adelman, Marquis, Sabatos-DeVito, & Estes, 2013) evaluated the processes

involved in word naming using a new data set that was somewhat unusual for the

field: It had only four subjects, each reading 2820 words 50 times. This design’s

purpose was to permit us to treat systematic individual differences as replicable

statistical patterns requiring explanation. Since there was a significant subject × item

interaction, we broke down the interaction on a subject-by-subject basis. We

concluded (1) that current knowledge of the factors affecting reading falls well short

of accounting for all the systematic variance in the data; and (2) that when using

mega-study data, modelers have compared their models to variance-explained

targets that are too lenient. Courrieu and Rey (this issue) argued that (1)

single-subject data are not necessarily more reliable than subject-average data

(though on their empirical tests, they were in this case) and (2) anyway, averaging

over “randomly sampled” participants is more informative about “general

mechanisms of reading” (p. XX).

Our arguments did not rely on a comparison of the reliability of the

single-subject data to the subject-average data — as assumed in their point (1) — but

rather on different approaches to estimating the reliability of subject-average data.

The difference between the two approaches results in analyses that correspond to the

traditional distinction between a fixed effect (ours) and a random effect (theirs) of

subjects, or rather that of the subject × item interaction. We, of course, do not believe

that subjects are fixed effects in the traditional sense (being exhaustive of the

population). However, we will demonstrate the counter-intuitive point that although

the fixed-effect analysis has narrower scope, it is more useful for assessing general

mechanisms, both for the comparison we performed and more generally. Whilst

different analyses can be useful for different research questions, the questions that are

scientifically or practically interesting in the context of experiments on word naming

are better answered by the fixed effect approach.

Decomposition of item variance
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The fixed approach and the random approach differ in how they treat subject

idiosyncrasies, and different estimates result. Consider an experiment like ours with

items (I), subjects (S) and replicates of each subject-item (S × I) combination. The

variance to be explained is equivalent to the mean-squares associated with items,

MSI , which is an overestimate of the variance due to the actual item effect because

this estimate is contaminated by variance from subjects and noise. An item-R2 target

says what proportion of the MSI is due to the actual item effect. The random

approach assumes that the target of interest is the average of the population from which

the subjects are randomly sampled, whereas the fixed approach assumes that the

observed subjects are the target of interest. The random target is therefore

TR = 1 − MSS×I/MSI and the fixed target is therefore TF = 1 − MSW/MSI , where

MSW is the variance within each subject-item combination. TR is designed to treat

subject idiosyncrasies as to-be-left-unexplained and TF is designed to treat them as

to-be-explained. If one uses (as we did) a simple signal-noise dichotomy, i.e.

R2 = 1 − proportion noise, then things to-be-left-unexplained are noise. The random

approach is therefore equivalent to treating subject idiosyncrasies as (structured)

noise. E(MSS×I) ≥ E(MSW), with equality only when there are no stable individual

differences in item effects. If there are such stable differences, E(MSS×I) > E(MSW),

and E(MSS×I/MSI) > E(MSW/MSI). That is, the noise estimate for TR is greater

than that for TF. If — as we will show — MSW/MSI is the more useful definition of

noise for the problems at hand, then MSS×I/MSI is an overestimate of the noise. This

is what we meant when we wrote “Analysis techniques that treat individual

differences as noise will necessarily overestimate the amount of noise contributing to

the mean RT for each word. This overestimation of noise results in an

underestimation of the variability that a model should explain, leading to an

overestimation of the success of models.” (Adelman et al., 2013, p. 1038). This

statement compares two analysis techniques (TR and TF) that both generate targets

relating to MSI , that is, for the subject-average item means. Courrieu and Rey have

instead generated and tested a hypothesis (Inequality 5) that compares the
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magnitude of TR for the subject-average item means with that of a single-subject

target (not TF), infelicitously referring to this as a claim of ours to justify

single-subject experiments (the “second experiment” on p. 5). Their comparison is

not informative as to whether to use this single-subject target, because the total

variance of this measure is different to the measure with which it is compared (TR).

We believe their confusion results because (a) this statement was part of our

design’s justification, but the part being justified was the use of replicates (required to

calculate MSW); and (b) we did ultimately analyze the data on a per-subject basis.

Breaking down the subject × item interaction constrains models

Our analyses ultimately focused on analyzing each subject separately, because

we found a significant subject × item interaction, and an interaction limits the

conclusions that can be drawn from the main effects. Therefore, we omitted to report

the overall TF of 93.22%, which is substantially greater than the TR that Courrieu and

Rey (this issue) report of 79.40%. It may not have been obvious that we were testing

the subject × item interaction because we used Kristof’s (1973) method instead of the

standard F = MSS×I/MSW . This F test analysis is of course also significant, but it

does not indicate if the interaction was driven by overall speed, so Kristof’s test was

more informative (others might use a z-scoring approach to remove “general speed,”

but see Adelman, Sabatos-DeVito, Marquis, & Estes, 2014, for criticism).

The formal argument that it is advisable to break down fixed-effect interactions

corresponds to an important substantive point: Individual differences add

information that is necessary to properly identify the constraints on general cognitive

mechanisms. Consider the length effect, which we considered separately for regular

words and for exception words. Such effects are sometimes believed to be absent for

naming short words on the basis of Weekes’s (1997) study, but mega-study data

typically show a small inhibitory effect. In our Figure 1, for exceptions, all showed

the inhibitory effect of length, except M, who showed no effect; for regulars, D and A

showed the inhibitory effect, M showed a facilitatory effect, and U showed no effect.

By taking the fixed approach, M’s idiosyncratic pattern adds information that is not



INDIVIDUAL DIFFERENCES 6

available in the average data. It suggests that the length effect could be associated

with a process whose influence is not central to reading. It also refutes any model

that necessarily predicts an inhibitory length effect. In contrast, the random-effects

logic of “general psychology” as described by Courrieu and Rey would infer from a

significant average inhibitory length effect that a correct model would always predict

such an inhibitory length effect. Accounting for M’s pattern is not a simple matter of

adding idiosyncracies to such a model, but instead would require a different set of

mechanisms.

The fixed-effect model is the correct comparison for regression models

Most analyses of mega-studies use regression models on item means. Adelman

et al. (2013) calculated (a) such regression models and (b) R2 targets to compare them

with. The mega-study regressions are by-items, so they treat subjects as fixed effects.

A regression model of this sort will adapt its regression coefficients to match the

idiosyncracies of its subject sample as well as possible, and its R2 will reflect how

well it has done so. The correct target for a regression model that takes subject

idiosyncracies into acccount (like those normally used on mega-studies) is a target

that takes subject idiosyncracies into account, namely our TF target. TR is lower and

therefore too lenient. We illustrate this (i) with a thought experiment for an ideal case,

and (ii) with simulations of a more realistic set of data.

Illustration 1: Thought experiment

Consider some task for which there are two possible strategies. Strategy 1 is

affected (facilitated) only by variable A, and strategy 2 is affected (facilitated) only by

variable B. Stimuli are selected for a study in which A and B are not correlated, as in

an ideal experiment. Replicates are collected (each participant responds more than

once to each stimulus), so that TF can be calculated. Each subject reliably uses a single

pure strategy, and there is no trial-to-trial variation in response times. That is, some

subjects’ RTs are perfectly correlated with A, and the other subjects’ RTs are perfectly

correlated with B. For a regression model with A and B as predictors of these average

data, there are always some coefficient on A and B that can fit the average data
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perfectly, so its R2 will always be 100%. The TF target is based on the idea that how

well each subject replicates himself is informative as to how well a model can do; there

is no trial-to-trial variation, each subject replicates himself perfectly, so TF is 100%.

This correctly reflects how well the regression model does. The TR target is based on

the idea that how well subjects replicate each other is informative as to how well a

model can do. When the sample contains some subjects using strategy 1 and some

using strategy 2, whose RTs correlate 0, the average correlation will be less than 1.

Then TR < 100% = R2. TR is an underestimate that incorrectly indicates that the

regression is doing better than possible. Note that the average data offer no way to

discern the correct cognitive model. To address any concern that there may be

something peculiar to this ideal case that will not generalize, the next illustration is

more similar to the word naming situation we have been considering.

Illustration 2: Simulated data

We simulated artifical data from a model that contained the subject-

idiosyncratic effects in the form of subject-specific coefficients in a linear model from

lexical predictors to response times. For simplicity, we included only three lexical

predictors, log. frequency (SUBTLEX + 1), length and a hypothetical to-be-discovered

variable with a standard normal distribution of scores over items, which we will call

foo. The subject idiosyncracies were simulated as follows: Frequency: a −3 × χ2(5)

distribution. Length: a N(6, 30) distribution. Foo: a 9 × χ2(2) distribution.

For each simulation (representing an experiment), we sampled new subject

idiosyncracies and normally distributed trial-to-trial noise. Given the known noise

distribution, we used analytic results to produce item-mean R2 targets under fixed-

effect and random-effect models, and compared these to the correct regression model

with all three variables, and the “currently-known” regression model with only log.

frequency and length. TR was considered both with and without z-scoring of subjects.

We ran 1000 simulations, in which 4 subjects read each of 2712 items 50 times

each, using a noise standard deviation of 250. Across all simulated experiments, the

mean subject-average item R2 of the correct 3-variable model was 83.82%. The
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average TF was 83.77%. The mean absolute deviation between the correct model’s R2

and TF was 0.35%. TF thus accuractly indicated what we should expect a model to do.

In contrast, the average TR was 66.84%, or 67.59% (with z-scoring), which are

underestimates of what the correct model achieves. The incomplete two-variable

model (without foo) explained 66.73% of the variance on average. TR would therefore

incorrectly label an incomplete set of predictors as adequate to explain the data.

The TR target leads to the wrong conclusion. It does so because — whether or

not one is presently interested in the subject variation — the subject variation in the

effects is systematically associated with cognitive processes that are of the same form

but different magnitude across subjects.

The fixed-effect model is the correct comparison for cognitive models

Just as multiple regression models have coefficients, cognitive models

explaining multiple lexical variables also have numerical parameters. These

parameters can be adapated to the idiosyncracies of a data set or indeed individual

participants to improve the fit. This is the same property of models that makes TF

rather than TR correct for regression models (see above). Although modelers

sometimes argue that their model parameters are not free, the qualitative mechanisms

are the theoretical content of the model, and the parameters could be altered to save

the theoretical content if the data required it. Indeed, given there are no truly random

samples, parameters should be optimized wherever possible (for further discussion,

see Adelman & Brown, 2008). So, TF is also the correct target for cognitive models.

The fixed-effect model is appropriate for some designs of experiment

The fixed-effect model for subjects can also be of use elsewhere. For cognitive

modeling, we are sometimes interested in whether a variable affects cognition, and

this is not logically identical to the effect being non-zero on average over the

population: a variable can facilitate for some people, inhibit for others and we would

want to account for it in a cognitive model, even if it averages out to zero. Clark

(1973) considered a within-subjects between-items design. As well as rejecting F1, he

rejected F2, which uses a subject-fixed (item-random) model. He recommended less
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powerful tests based on subject-random (item-random) models because he argued F2

produces significant results for a case (his (4b)) which it should not: When the effect

has zero mean but subjects vary around zero. But declaring such an effect not

significant says — incorrectly — that the variable should not be accounted for by a

cognitive model. F2 might give a significant result in this case, and this would —

correctly — indicate that a model should account for it.

General mechanisms are obscured — not clarified — by averaging over subjects

Statistical generalization of the average across experiments with new subjects is

not the same as scientific generalization. The statistical generalizations that Courrieu

and Rey (this issue) consider apply only to the mean of the population, but the

regularities that govern cognition need not hold for the mean. If, for instance, practice

improves response latencies with a power law, but at different rates for each subject,

the average data will not show a power law, which is the regularity a cognitive model

should predict in this case (Estes, 1956). This problem holds for any cognitive

mechanism that is not mathematically equivalent to a linear regression model. As

such, individual differences should not be an afterthought in cognitive modeling.

The utility of mega-studies

Finally, Courrieu and Rey (this issue) suggest that our intent is to “disqualify”

(p. 5) a wide range of mega-studies from publication. For the purposes of setting

model R2 targets and therefore directly testing cognitive models, we prescribe

fixed-effect analyses that require replicates. There is no disqualification of

mega-studies with replicates, if they are presented with the prescribed TF analysis,

nor without replicates, if they are used for any of the other purposes of mega-studies

(see Balota, Yap, Hutchison, & Cortese, 2012, for numerous examples). That is:

mega-studies without replicates should no longer be used for setting model targets,

and mega-studies with replicates should use TF.

Conclusion

Courrieu and Rey (this issue) argued that single-subject data are not always

more reliable than subject-average data, but this was not our claim. They do
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accurately identify our article as stressing that investigating the structure of

individual differences is critically important for assessing models. However, they

argue to the contrary that average data can model “general mechanisms.” The

random effects model this implies provides only limited information about the

cognitive mechanisms that are generally true. Treating subjects as fixed effects results

in a more accurate picture of what a model can and should account for.
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