
Adelman, J. S., & Brown, G. D. A.Modeling lexical
decision: The form of frequency and diversity effects. and
Postscript: Deviations from the predictions of serial search.

DOI: 10.1037/0033-295X.115.1.214
In press, Psychological Review, as at October 24, 2007.
This article may not exactly replicate the final version
published in the APA journal. It is not the copy of

record.

1



Modeling Lexical Decision 1

Running head: MODELING LEXICAL DECISION

Modeling Lexical Decision: The Form of Frequency and Diversity Effects

James S. Adelman and Gordon D. A. Brown

University of Warwick

Corresponding Author:

James S. Adelman

Department of Psychology,

University of Warwick,

Gibbet Hill Road,

COVENTRY,

CV4 7AL,

UK.

Telephone: +44 (0) 24 7615 0233

Electronic mail: J.S.Adelman@warwick.ac.uk



Modeling Lexical Decision 2

Abstract

What is the root cause of word frequency effects on lexical decision times? Murray and

Forster (2004) argued that such effects are linear in rank frequency, consistent with a

serial search model of lexical access. This paper (i) describes a method of testing models

of such effects that takes into account the possibility of parametric overfitting; (ii)

illustrates the effect of corpus choice on estimates of rank frequency; (iii) gives derivations

of nine functional forms as predictions of models of lexical decision; (iv) details the

assessment of these models and the rank model against existing data regarding the

functional form of frequency effects; and (v) reports further assessments using contextual

diversity, a factor confounded with word frequency. The relationship between the

occurrence distribution of words and lexical decision latencies to those words does not

appear compatible with the rank hypothesis, undermining the case for serial search

models of lexical access. Three transformations of contextual diversity based on extensions

of instance models do however remain as plausible explanations of the effect.
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Modeling Lexical Decision: The Form of Frequency and

Diversity Effects

The effect of word frequency on lexical processes is both ubiquitous and large. It is

evident in a wide range of both tasks (e.g., lexical decision, word naming, picture naming

and memorial tasks) and measures (especially response times and eye fixation times, but

also errors in the aforementioned tasks). It therefore seems reasonable to require models

of lexical tasks to account not only for the existence of frequency effects, but also for their

form. However, few existing models provide such an account. Murray and Forster (2004)

took up the challenge in the context of lexical decision times. Specifically, they showed

that their bin model, a frequency-ordered serial-search model of lexical access, predicts

that lexical decision times will be determined by the rank ordering of word frequency. In

comparisons between rank and logarithmic transformations, they argued that just this

pattern could be seen in the data, and (inter alia) interpreted this result as evidence for

serial search models.

As Murray and Forster (2004) made clear, one advantage of a clear theoretical

framework, such as their serial search model, is that it gives a principled prediction of the

functional form of frequency effects. According to Murray and Forster’s bin model, tasks

such as lexical decision require serial search of frequency-ordered lists. The expected

ranked position of a word in any list is a linear function of the word’s rank frequency,

leading to the prediction that expected search time will be linear in rank word frequency.

We agree with Murray and Forster that future progress will require the derivation and test

of specific predictions of fully explicated models such as the one described in their paper.

In particular, the evaluation of whether the ranked frequency of a word, rather than some

other (e.g., logarithmic, power, or exponential) transformation of frequency, predicts

lexical decision time would appear to have wide implications for quite general classes of

lexical access model.
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In this paper we consider several different classes of model architecture and derive

their specific predictions regarding the functional form of the word frequency effect (e.g.,

logarithmic, power and exponential from Bayesian, instance and contextual cue models

respectively). This allows us to evaluate different classes of model against several large

data sets. In particular, we explore some of the specific claims made by Murray and

Forster (2004) and question their conclusions regarding serial search models, before

turning to a more general survey of predictions regarding lexical decision latencies.

The plan of the paper is as follows. First, we examine Murray and Forster’s

dismissal (on the grounds of complexity) of the power transformation. We show that

additional tests on Murray and Forster’s own data suggest the superior fit of the power

transformation is not solely due to its propensity to overfit due to complexity. Second, we

argue (contrary to Murray and Forster’s assumption) that high correlations in frequency

among corpora do not guarantee accurate assessment of models based on rank word

frequency, suggesting the use of alternatives to the Kučera and Francis (1967) word

frequency counts. In the third part of the paper, we derive predictions concerning the

functional form of word frequency effects from several different classes of model. In the

fourth part of the paper, we test these predictions regarding frequency effects with large

data sets and find evidence against a number of models. Finally, we argue that it is not

word frequency but rather the correlated factor of contextual diversity that determines

latency of access (McDonald & Shillcock, 2001; Adelman, Brown, & Quesada, 2006), and

conduct similar analyses with this variable. Overall, the additional analyses that we

report narrow the model types that can be considered compatible with existing data.

The evidence adduced by Murray and Forster (2004) for their model was based on

three new lexical decision experiments and on analyses of a subset of the data from a

mega-study by Balota, Cortese, and Pilotti (1999), using only the Kučera and Francis

(1967) frequency count. The largest difference in prediction of response times (favoring
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rank frequency over log frequency) was obtained for the Balota et al. (1999) data. Murray

and Forster (2004) used only lexical decision data to support their claims regarding lexical

access; we also consider only data from this task. Additional assumptions allowed an

extended version of the bin model to account for error rates (and error response times),

but the signature effect of such a model is a linear relationship between rank frequency

and (correct) lexical decision times, so any case against the model is both sufficient and

strongest if it is based on the response times. In addition, a focus on latencies rather than

error rates allows straightforward derivation of predictions from other classes of model,

and more accurate assessment of such predictions (because variance in error rates is high,

especially at the item level).

The Methodology of Comparing Fits of Frequency

Transformations

We first consider two methodological aspects of the Murray and Forster’s (2004)

assessment of transformations of frequency. These give the motivation for some of our

additional analyses.

Comparing Rank and Power Law Fits

Murray and Forster (2004) found that a power law transformation of frequency gave

a higher R2 on their (Experiment 1 and 2) data than did the rank of frequency. However,

they suggested that this result might have been an artifact arising from the additional

parameter of the power function. They supported this claim by simulations, the results of

which illustrated the fact that R2 values can misleadingly favor a two-parameter power

function over a one-parameter linear function1.

This observation does not itself, however, indicate that the power law functional

form should be dismissed. It is important to know whether the observed R2 advantage for

the more complex function is of about the expected size on the basis of this bias, or is
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larger than expected, as only the latter gives evidence against the simpler function. To

discover this, one can instead simulate many sets of data under the hypothesis that the

rank function generates response times in the task, in order to estimate the true

distribution of the power law R2 (or any other statistic) under the rank hypothesis, and

then test whether the observed value falls in the tail of this distribution. In order to

generate response times under the rank (or any other) hypothesis, it is necessary to make

assumptions about the distribution of response times, because typically models predict

central tendency (in this case mean lexical decision time), but not the dispersion around

that central tendency. When a hypothesis is instantiated by using the empirical

(observed) distribution to estimate the distribution of the population under that

hypothesis, and the distribution of a statistic is examined under repeated resampling

(with replacement, and especially, but not necessarily, by simulation), this is known as a

bootstrap (Efron & Tibshirani, 1993).

Within the data we used here, the predictors, including frequency (however

transformed), are effectively fixed factors2. The appropriate procedure is then as follows.

One first fits the model under test (H0). Estimates are thereby obtained of the model’s

parameters, and of the distribution of errors in prediction (i.e., residuals). The observed

error distribution estimate is then used3 to generate simulated data around the

predictions of the model with the estimated parameters. This step is repeated many times

to produce several (B) bootstrap ‘replications’ of the experiment of interest. For each of

these, some statistic (T ) of interest (for which higher values indicate more H0 misfit) has

an estimate (t∗i ) calculated. These t∗i values form an estimate of the overall distribution of

this statistic, which can be compared with its observed value (t) from the genuine

experiment. The size of the tail this cuts off (p̂ = #(t∗ > t)/B for T , where low p̂ values

are evidence against H0) can be used for a (usually one-tailed) null-hypothesis significance

test, with results in the tail taken as cause to reject the model under test. The tests we
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discuss in this paper use the fit of some other model (Ha) as a component of the statistic

T (most simply, the R2 for Ha) so that evidence against H0 is based on systematic

deviations from its predictions.

In our first illustrative analysis, we conducted simulations with the rank model as

H0 and examined the R2 of a power-law based model acting as Ha. (The derivation of

such a model with the exponent as a free parameter is given later in the paper.) Figure 1

shows the estimated distribution of a power function’s R2 (this acting as T ), when rank

frequency generated the simulated data, with the simulation constructed on the basis of

the condition means from Murray and Forster’s (2004) Experiment 1. The mean was

90.3%, similar to the value obtained by Murray and Forster in their higher variance set of

simulations, and higher than the baseline (88.4%) for the fit of rank. This result is

consistent with the assertion that the R2 estimate is very biased. The observed R2 for the

power law functional form was 92.1%. This value did not fall in the 5% tail of the

distribution simulated under the rank hypothesis; in fact, p̂ = .324. However, whether the

R2 of the power function is surprisingly high (given the rank hypothesis is H0) is better

considered by comparing it to the baseline R2 of the rank function, and asking whether

the difference is surprisingly high. This procedure ameliorates the influence of

idiosyncratic properties of the sample. In many of the runs of the simulation (or indeed

actual replications of the experiment) where the power R2 is high, the rank R2 will also be

high, as the predictions of the two models are in many cases very similar. For instance,

both will obtain their better fits when the frequency to response time relationship is

monotonic. Failing to take account of this relationship between the two values of R2 being

compared therefore reduces the power of the test, just as using a between-subjects t-test

loses power when a within-subjects t-test is appropriate. Thus, some paired comparison is

necessary. The simplest such method, illustrated in Figure 2, uses the difference score of

the R2 values as the statistic of interest (T ). The distribution of this statistic had a
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positive mean, again pointing to bias, but the observed difference of 3.7% was now in the

5% tail (p̂ = .024). This provides evidence that the extent to which the R2 was higher for

a power-law function cannot be explained away by the tendency for power laws to fit data

generated according to the rank hypothesis better than rank frequency4. Such a result

appears to be inconsistent with the serial search hypothesis.

There are two ways, however, in which such a methodology is incomplete. First, it

may depend too heavily on the specific parameters that are estimated. This type of

simulation treats these parameter estimates as exact, generating a distribution (of T ) that

gives the correct rejection rate only if the estimates obtained are without error. The

standard t-test resolves this problem with respect to variance when comparing two means;

dividing through by the standard error creates a statistic whose distribution is

independent of the variance. We used a technique known as the double bootstrap (whose

details are described by Beran, 1988)5 to find a statistic that had the property of being

relatively independent of the parameter estimates in exploratory simulations. Omitting

the details, the statistic used in the Hotelling t-test for comparing r values appeared

satisfactory (although its distribution was not the Student’s t that would occur for the

hypothesis that the r values are equal, as is usually tested with this statistic). A single

bootstrap simulation of the Murray and Forster’s (2004) Experiment 1 (condition mean)

data with this statistic, under the rank hypothesis, is given in Figure 3. Again, the rank

hypothesis was rejected (p̂ = .048).

Second, no examination has been made of whether the rank model can provide

evidence against the power model; since the models are not nested, the rank model can fit

better than one might expect were the power model true. We might find that both models

fit better than would be the case if the other were true if some hybrid model, some

mixture model, or some unrelated third model were in fact generating the data. Figure 4,

generated under a power model hypothesis, illustrates that such a possibility does not
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appear to be the case with these data: The power model was not rejected (p̂ = .402).

Notably, were the empirical fits of the two models equal, the result would have constituted

evidence against the power model (with p̂ = .008); the implication is that the rank model

could in principle have given cause to reject the power model even when its R2 was

smaller than the power law’s. However, it was sufficiently inferior that in this analysis it

did not give evidence against the power model. Hereafter, in presenting Monte Carlo

bootstraps, we will report only p̂ values, without plotting the full distribution.

The Distortion of Rank Frequency

The analyses above are consistent with a power law generating response times in

lexical decision, but not with rank doing so, giving evidence against serial search models.

A source of caution about these results and those of Murray and Forster (2004) is the

extent to which it matters which corpus is counted to derive the estimate of word

frequency. Murray and Forster noted that their data might be criticized on the basis of

their use of the Kučera and Francis (1967) frequency count, as there are counts based on

larger corpora, and by comparison, the accuracy of the Kučera and Francis estimates of

frequency for low-frequency words may be limited. To counter this possibility, Murray and

Forster noted the high (.900) correlation between the Kučera and Francis frequencies and

CELEX (Baayen, Piepenbrock, & Gulikers, 1995) frequencies for their Experiment 2

items, and argued that the counts are therefore so similar that the possible discrepancies

at the low-frequency end of the scale are too small to be of concern.

Murray and Forster (2004) also noted that lexical decision latencies from their

Experiment 2 correlated similarly with log frequency as derived from Kučera and Francis

(1967) and CELEX. However, the R2 of rank Kučera-Francis frequency in accounting for

these latencies was similar to that of log Kučera and Francis frequency, and so a more

accurate measure of rank frequency might correlate less well with lexical decision time. If
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so, evidence in favor or against models making the rank prediction could be spurious.

More importantly, other larger counts might improve the correlation among the variables.

Therefore we conducted analyses using frequency counts derived from (1) Kučera and

Francis; (2) the 12th grade level (and below) texts6 of the LSA TASA corpus (Landauer,

Foltz, & Laham, 1998); (3) CELEX; and (4) the BNC (British National Corpus

Consortium, 2000). Use of these corpora allowed us to construct frequency counts based

on 1.0, 8.3, 17.9, and 84.5 million word tokens respectively.

As Murray and Forster (2004) noted, when calculating ranks of frequencies, it is

important to take account of the fact that the corpus will probably contain words

unknown to the participant pool, and which therefore will not be searched (assuming a

rank model is true). For all the corpora, we calculated adjustments to estimates of rank in

a fashion similar to Murray and Forster. A total of 30,196 types chosen from the corpora

randomly were each checked in an unspeeded fashion by one of two undergraduate raters

for whether they were known. For each frequency in each corpus, the proportion of

unknown words was used to adjust the rank of words of lower frequency and words of the

same frequency (to obtain the correct tied rank); for the higher frequency words, adjacent

frequencies were merged into bins due to few observations.

Comparison of the relationships among rank frequencies in Figure 5a demonstrated

that the ranks of many words in the relatively small Kučera and Francis (1967) counts will

be underestimated quite greatly at the low frequency end of the scale, and that this

distortion is not linear, meaning that predictions generated linearly from these estimates

will not correctly reflect a rank model. This occurs because some words of moderately low

frequency are missing from the corpus, permitting words of lower frequency that are in the

corpus to leapfrog them, without the higher frequency words occuring to balance the error

(for instance, Burgess & Livesay, 1998, listed cucumber, diploma and reptile among

the words missing from the Kučera-Francis counts). By contrast, in Figure 5b log
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frequency can be seen to be only slightly distorted, because for word frequency (unlike

rank) the main source of distortion is a few words whose genuine frequency is just below

one per corpus size.

Some frequency counts are more reliable and predictive than others (e.g., Burgess &

Livesay, 1998; Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004). Moreover, there

are systematic and distortive differences in estimates of rank frequency. It seems possible

that the distortion in the estimation of rank frequency might account for its apparent

superiority, especially as the predicted response times from rank for the lowest frequency

words already were too long, and correcting the distortion can only exacerbate this

problem.

There are two ways that have been described in which the methodology of

assessment of transformations of word frequency can be extended. First, bootstrap tests

can be used that are based on testing the hypothesis that a model is correct, allowing a

strict test that is suitable for models with several parameters. Second, more accurate

estimates of frequency, and (consequently) less biased estimates of rank frequency, can be

used in these assessments. Although we have adduced some evidence in favor of the power

model and against rank, the analyses were made with a small frequency count that will

have distorted predictions with respect to rank. Before turning to our full analyses of

several data sets, we consider the predictions of other models of lexical decision with

respect to the functional form of word frequency effects.

Alternatives to the Rank Model

With the machinery in place to test functional forms of frequency effects, the next

two sections of this paper (i) derive the predictions of several classes of model for this

functional form (e.g., logarithmic and power for Bayesian and instance models,

respectively), and (ii) test these predictions against large data sets using the bootstrap
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methodology.

Bayesian Model

The Bayesian Reader model (Norris, 2006) is based on the assumption that the

decision processes involved in visual word recognition tasks are based on a criterion for

posterior probability of stimuli under priors based on word frequency. A simplified version

of the Bayesian Reader predicts a logarithmic relationship between frequency and lexical

decision latencies as we now show. Suppose for a given input word w among all words W ,

the probability density of a particular input pattern xt occuring on any time tick t is

fw(xt), and that when a nonword is presented the probability of a given input pattern xt

on any given time tick is g(xt). πw denotes the prior for a word w. Then a Bayesian model

stops and responds correctly for a word at the smallest T such that the posterior

probability of the input being a word exceeds a threshold τ < 1. That is:

∑

w∈W

πw

T
∏

t=1

fw(xt)

∑

w∈W

πw

T
∏

t=1

fw(xt) +
T
∏

t=1

g(xt)

> τ.

If the inputs come from a particular word w, then the xt come from the distribution

defined by fw. If we neglect the contribution from the other words (neighborhood effects),

then the rule is:

πw

T
∏

t=1

fw(xt)

πw

T
∏

t=1

fw(xt) +
T
∏

t=1

g(xt)

> τ,

which is equivalent to

πw

T
∏

t=1

fw(xt) +
T
∏

t=1

g(xt)

πw

T
∏

t=1

fw(xt)

<
1

τ
,
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since probability densities and priors are positive. This is the same as:

T
∏

t=1

g(xt)

πw

T
∏

t=1

fw(xt)

<
1 − τ

τ
.

Taking logarithms and switching signs,

log πw +
T

∑

t=1

(log fw(xt) − log g(xt)) > log τ − log(1 − τ).

Under independence of the xt, this is a random walk with threshold

log τ − log(1 − τ), mean drift Efw (log fw(xt) − log g(xt)), and starting point log πw. Since

the drift is on average linear, the expectation of the stopping time (smallest t) is

(negative) linear in the starting point log πw. If the priors are based on word frequency

then this model will predict that a logarithmic functional form in frequency will dominate

lexical decision latencies. Notably, the predicted response times do not depend on the

total number of word experiences (summed subjective frequency over the whole

vocabulary) because proper priors sum to one.

Instance Model

We now show that instance models predict various types of power law, depending on

the details of their instantiation. Suppose that each experience with a word leaves an

instance (trace) in memory, following the instance model of automatization (Logan, 1988).

(This model is not the same as Logan’s in that there is no algorithmic component.) Upon

later presentation of that word in the lexical decision task, the time taken to retrieve each

trace follows a Weibull distribution, whose cumulative distribution function

F (x) = 1− e−xα
with α > 0 a free parameter. A positive lexical decision is made when the

first such trace is retrieved, with density Ln depending on the number of traces n, thus

(Colonius, 1993):

Ln(x) = 1 − (1 − F (x))n
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= 1 −

(

e−xα
)n

= 1 − e−nxα

= 1 − e−(n1/αx)
α

and since the x values are scaled by n1/α and α and n are constants with respect to x, the

expectation of this is proportional to n−1/α giving a power law functional form in

frequency (as number of experiences is proportional to frequency).

Extension with Background Instances. If b further instances representing the

nonword alternatives or other, similar, words race with those representing the presented

word, then the expectation of response time is proportional to (b + n)−1/α, the generalized

power model. If the exponential distribution, that is Weibull with α = 1, is used, then

expected response times are 1/(b + n), a more common race model.

Duration-Practice Model

Next, we consider a model in which decision times reduce in direct proportion to

practice. It is simple to show that such a model predicts an exponential function form of

frequency effects. For notation, assume that on the (n + 1)th experience (after n previous

experiences) with a word it takes Tn to complete the access component of the lexical

decision (and some additional period of time for residual (perceptual, motor)

components). Suppose that on the nth occasion, practice occurs to a factor 0 < θ < 1,

such that the time taken is reduced by θTn−1 for the next occasion. That is,

Tn = Tn−1 − θ.Tn−1 = (1 − θ)Tn−1. Clearly then, Tn = (1 − θ)nT0 = exp(n. log(1 − θ))T0,

giving an exponential function in frequency (Heathcote, Brown, & Mewhort, 2002).

Restricted Contexts Model

We now consider a model in which word frequency effects occur because frequent

words are more likely to have occurred in a context that overlaps in representation with
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the context at test; such a model also predicts an exponential functional form. Suppose

that m distinct contexts can be mentally represented, and each occurrence of a word

occurs in each of these contexts with equal probability. After n occurrences of a word,

given an arbitrary (random) new experimental context, the probability that it has not

been seen before in this context is given by (m−1
m )n (the probability that it occurred n

times in one of the other contexts), and this is equal to exp(n. log((m − 1)/m)). If words

not seen in the current context on average generate slower lexical decisions (but response

times are not otherwise conditional on frequency), then this again gives an exponential

function in frequency.

Hybrid Context-Instance Model

More complex models can be considered. The above model can be augmented with

the assumption that if the word has not been seen in the present context, all the other

contextual instances race, as in the Instance model, to be retrieved. The overall expected

response time will then be the product of the exponential function and the (generalized)

power function giving an (A)PEX function (Heathcote et al., 2002).

An Interactive-Activation model

Finally, we consider an interactive-activation (IA) model that is similar in operation

(with squashing action removed) to the lexical route of the DRC (Coltheart, Rastle, Perry,

Langdon, & Ziegler, 2001) with only a specific lexical activation (not a total lexical

activation) rule. The external input to a word unit is constant when the activation of the

letter units is constant, which typically occurs very early in processing in the DRC, so we

treat it as a constant. There is additional (negative) input to the word unit, which

represents an influence linear in some transformation g of frequency, so overall the input is
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of the form j + kg. The change in activation from one time step to the next is:

at+1 − at = j + kg − θat.

Approximating this as a continuous process gives:

da

dt
= j + kg − θa,

whose solution for the time T at which activation reaches a threshold A is

T =
1

θ
log

(

j + kg

j + kg − θA

)

,

an inverse logistic equation, which is proportional to log((a + g)/(b + g)). In the DRC, g is

the logarithm of frequency (hereafter IA2), but a plausible alternative is to have g directly

proportional to frequency (hereafter IA1).

Recapitulation

There are several alternative models that make predictions as to the functional form

of the word frequency effect. Those derived in this paper are as follows. A Bayesian model

predicts a logarithmic relationship between frequency and response times. An instance

model predicts a simple power law with negative exponent. An extended instance model

with background elements predicts an adjusted (generalized) power relationship, where a

constant is added to the frequency before before the power law is applied. A race model is

a special case of this model with the exponent fixed as -1. Duration-practice or restricted

contextual representation models predict an exponential relationship. Hybrid

context-instance models make predictions that are those of the two models multiplied

together (PEX from power or APEX from adjusted power). Interactive activation models

predict an inverse logistic function in frequency (IA1) when they have bias linear in

frequency, and an inverse logistic function in log. frequency (IA2) when they have bias

linear in log. frequency.
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Frequency Counts and Fits

We have shown that there are several theoretically plausible functional forms of the

relationship between word frequency and lexical decision latencies in addition to the rank

hypothesis considered by Murray and Forster (2004). This section of the paper uses the

bootstrap procedure previously described to examine the evidence for the rank and other

models that is given by data in Murray and Forster’s Experiment 1, and mega-studies

conducted by Balota et al. (1999) and Balota et al. (2002, 2007). In the light of the

differences we have detailed that may arise between frequency counts, we used all four

frequency counts that we have already considered above.

We first considered the data of Murray and Forster’s (2004) Experiment 1. 471 of

the 4747 items used in that experiment appear in all four corpora. Although these data

were collected to fill frequency conditions or bands (as they cover a small range of

frequencies), it would be inappropriate to conduct tests using bands for the frequency

counts not used to design the experiment, so all our analyses are based on items. We also

considered (raw) mean response time data from three mega-studies, young and older adult

samples reported by Balota et al. (1999), and the Elexicon (Balota et al., 2002, 2007)

database. For these, we included as covariates the length (in letters), the orthographic

neighborhood size (Coltheart, Davelaar, Jonasson, & Besner, 1977; Andrews, 1989, 1992,

as this variable correlates with frequency and affects lexical decision), and the number of

syllables. We also included all the available data8, not only those in a restricted frequency

range: As Murray and Forster noted in the rationale of their Experiment 2, the distinction

between transformations of frequency will be most evident at the extremes of the

frequency range. The range examined here is approximately .01 to 65000 per million (a

ratio more than four orders of magnitude greater than was the case in Murray and

Forster’s Experiment 2) when the largest corpus is considered

As a summary measure, the R2 value is reported for each combination of data set
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and transformation (with optimized parameters) in Table 19. Many of the other

transformations of frequency exhibited a higher R2 than rank on most of the

dataset-corpus combinations. Notably, with the data of Murray and Forster’s (2004)

Experiment 1, an advantage obtained for rank over log only when Kučera and Francis

(1967) was used.

Of course, simply observing that a particular R2 value exceeds another is not a valid

statistical reason for rejecting a particular model; rejection should occur when it is

implausible that the model produced the data. Table 2 therefore presents p̂ values from

bootstrap analyses of the rank model and the various other models, using the procedure

detailed earlier using the Hotelling statistic on the r values from the two models, treating

the rank model as the model under test (i.e., the simulated model, H0, against which

these are one-tailed tests)10. Therefore each value indicates the extent to which the

results are surprising under the rank model, with low values indicating unexpectedly good

fit for the alternative model. (The measurement of unexpectedness is under the

assumption that the rank model is true, so high p̂ values are not evidence against the

alternative; separate tests, described below, are needed for this.)

In the vast majority of cases (117/144, including every test for the Elexicon data),

the alternative model fitted significantly better than it would were word frequency effects

in lexical decision governed by rank of frequency11. In the interest of giving the model

under test the benefit of the doubt, in our interpretation we gave precedence to the test

performed with the highest R2 for the model under test (H0, i.e., rank). In 33 out of 36

such comparisons, the evidence gave a result significant against rank at the 5% level. In

some of these cases there was evidence against the rank model even when the alternative

model had a lower R2: For instance, log frequency would not have fared nearly so well as

it did had rank produced the data, even in many cases where it appeared inferior.

Critically, this means that there is systematic variability in the response times that can be
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attributed to word frequency but for which rank frequency cannot account. In each case,

the conclusion is not that the alternative model is correct. In particular, the results do not

license an argument in favor of the log transformation; if a log transformation were

generating the data, it would have consistently had a higher R2 value than rank (because

their complexity is equivalent). Evidence has also been found against a log transformation

previously by Balota et al. (2004), whose analyses found a quadratic tendency in log

frequency to be significant (albeit before taking into account covariates) in the data of

Balota et al. (1999).

To determine which, if any, of these other models were plausible in the light of the

level of rank’s fit to the data, tests swapping the roles of the models (i.e., switching H0

with Ha) are presented in Table 3. Each value indicates the extent to which the results

are surprising under the particular (H0) model, with low values indicating unexpectedly

good fit for the rank model, giving evidence against the H0 model. As has already been

related, the logarithmic frequency model could also be rejected; 14 out of 16 comparisons

were significant (at a 5% level), and for three data sets, this included that with the corpus

most favorable to log in terms of R2. 10 out of 16 comparisons were disfavorable to the

power transformation, all on the mega-study data; for all of the mega-studies, a highly

significant result occurred for the most favorable corpus. 6 out of 16 comparisons gave

evidence against the race model, including with the three larger corpora on Elexicon. 13

out of 16 comparisons gave significant results against the exponential model, including all

comparisons with older adults, and all with Elexicon. Both the power-exponential (PEX)

and IA1 models had 3 out of 16 results significant against them, including a highly

significant result in the Elexicon-BNC combination, and the BNC performed best on

Elexicon for this hypothesis. The situation with generalized power was less clear.

Although 3 out of 16 results went against it, including the that with Elexicon-BNC

combination, this result was not highly significant (p̂ = .047); and the one highly
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significant result was with TASA on the young adult monosyllable data, where CELEX

performed better. In the light of the number of datasets (four), the former result does not

appear good reason for rejection with, for example, a Bonferroni corrected criterion of

.0125. One result was significant at 5% but not 1.25% against the APEX model, and this

was not with the corpus performing best for that data set.

Contextual Diversity

Why do many of these models of word frequency (WF) fail to capture the variability

that appears to be due to word frequency? A serious problem for any attempt to account

for these effects in this way arises because it appears that word frequency does not cause

the effects that have been attributed to word frequency (irrespective of transformation).

We have provided evidence elsewhere (Adelman et al., 2006) that a contextual diversity

(CD) factor accounts for word frequency effects (cf. Galbraith & Underwood, 1973;

McDonald & Shillcock, 2001). Since words tend to cluster in contexts, the likely need

(Anderson & Milson, 1989) of a word in an arbitrary new context relates to the number of

contexts the word has been seen in before, not the number of occurrences of the word.

Documents are the natural contextual unit of a words in a corpus, and so we use this as a

measurement of contextual diversity (cf. Steyvers & Malmberg, 2003, who use this as a

normative measure of context variability). With either logarithmic or power law

transformations of WF and CD, Adelman et al. (2006) found a unique facilitatory

influence of CD, and the effects of WF were null or inhibitory, when assessed on

mega-studies of lexical decision and word naming.

The possibility that CD rather than WF might be the relevant causal factor

necessitates a re-evaluation of the models we have considered. The serial search model

whence derives the rank hypothesis might yet be plausible if it is the rank of contextual

diversity (and not the rank of word frequency) that determines the effects in question.
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Likewise, all of the other models may be modified by replacing word frequency with

contextual diversity, with the exception of the duration-practice model, and the contexts

model predicts the same functional form (exponential). Our list of functional forms is thus

unaltered, and we can proceed as before.

Table 4 shows the R2 values for contextual diversity fits to the various data sets

with each of three corpora12. We note in passing that for the overwhelming majority

(117/120) of corpus-transformation combinations more variance was explained by CD

than WF (consistent with the conclusions of Adelman et al., 2006). As before, most of the

transformations performed better than rank, although the results with log CD are more

mixed. Again, the bootstrap p̂ values for the tests of the rank model in terms of the fit of

the alternatives in Table 5 show that the rank model could be rejected on the basis that

the alternative models would not fit so well were the rank model generating the data

(82/108 at 5% level, and 64/108 at 1.25% level, including every test for the Elexicon data

and all but one test with TASA for the BCP99 young adult data).

Does the rank model account for variability that cannot be explained by the other

models? Table 6 presents the results of the relevant bootstrap analyses (analogously to

Table 3 but using CD in place of WF). There was evidence against the logarithmic

transformation in 9 out of 12 combinations; against the power transformation in 8 out of

12 combinations, all 8 on mega-study data; against the race model on the Elexicon data

with the two larger corpora; against the exponential transformation in all the analyses

with Elexicon and the older adult data, as well as the TASA analysis on the BCP99 young

adult data; against the IA1 model for the Elexicon-BNC combination; and against IA2 in

8 out of 12 combinations, all 8 on mega-study data. All of these models can be considered

rejected.

The remaining three models, the generalized power model, the power exponential

product (PEX) model and their common generalization, the APEX model, did not have
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any significant results against them at the Bonferroni-corrected criterion. Moreover, they

appeared to account for a significant amount of variability in the data that the rank model

did not. At this point however these three models have only faced the challenge of the

rank model: It is possible that they do not capture all the variation captured by one of

the other models. Table 7 presents the p̂ values for the relevant tests; these tests were only

performed using models that are not nested within the model that is under test. For

reasons described above, we considered rejection at p̂ < .0125. Only one test met this

criterion, testing the APEX model using the IA2 model on Elexicon, with the Kučera and

Francis (1967) corpus, where BNC was the preferred corpus for this data set. Our analyses

do not therefore provide strong evidence against any of the three remaining models.

Discussion

The aim of this paper was to investigate how the effects of word frequency can

inform us about the processes involved in lexical decision in the light of recent attempts to

account for such effects. To this end, we (i) described a method for assessing systematic

divergences from model predictions that makes allowances for the parametric flexibility of

models; (ii) analyzed the effect of the choice of frequency count to assess the effects; (iii)

derived predictions of several models as to the form of the frequency effect; (iv) assessed

the models against several existing data sets; and (v) investigated functional forms of the

confounded factor of contextual diversity as a further explanation of effects attributed to

word frequency.

There was evidence of systematic variability in lexical decision times that is

systematically related to word frequency, but it cannot be explained by a linear relation

with the rank of frequency. This variability may be related to contextual diversity, but

rank contextual diversity does not account for all the variability due to contextual

diversity. This undermines the case for serial search models of the type that Murray and
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Forster (2004) attempted to test, because these models’ signature functional form of effect

on response times was absent. Of course, some model in which serial search is only one of

the components sensitive to frequency could be constructed; to test whether such a model

is plausible, it would be necessary to specify the other processes and test that these

processes alone do not account for the results, using some method that takes account of

parametric complexity.

On the basis of our analyses, functional forms arising from extensions of instance

models (Logan, 1988) that introduce background instances (generalized power), posit

direct contextual access (PEX), or combine both of these features (APEX) remain viable

for a basic functional form of contextual diversity effects in lexical decision. It remains to

be seen whether these functional forms could be appropriate for response times to other

tasks, and what functional relationships are predicted and are obtained from other

measures such as dwell times.

Although these remaining functional forms are more flexible than several

alternatives, the evidence was not within the range expected due to this flexibility alone.

Nevertheless, should such functions remain viable, an important topic of research will be

the theoretical interpretation of the parameters giving them their flexibility: There might

be no such interpretation because the results could be artefactual of an approximation to

some yet-to-be-suggested functional form, but the results might also reflect a general

cognitive limit, or (perhaps more likely) individual differences between participants.

Individual participant experiments like Murray and Forster’s (2004) Experiment 3 are

likely to be instructive as to the usefulness of these parameters: Of their three

participants, two showed functional forms similar to a rank function, but one participant

gave data similar to a log function; these differences may in fact be genuine individual

parametric differences within one of these or another parameterized functional form,

rather than noise. As this last possibility would imply difficulties in averaging over
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participants in the analysis of these models (see for instance, Heathcote et al., 2002),

analysis at the level of individual participants will be necessary to test properly or

otherwise explore models with nonlinear parameters (a rank model has no nonlinear

parameters, although it is linear in neither word frequency nor contextual diversity).

Moreover, as with Murray and Forster’s (2004) development, it is insufficient to

posit a theory that accounts for only one effect in the data; Jacobs and Grainger (1994,

p. 1316) suggest that “[m]any researchers would probably agree that a model that explains

only one result or effect is not very interesting.” A quantitative account of the source of

the word frequency or contextual diversity effect in lexical decision does not account for

lexical decision unless it can also capture other effects. The inclusion of covariates in our

analyses is an imprecise proxy for a genuine account of these effects. Assessment of the

quantitative ability of extensions of the models considered in this paper to account for

other effects will likely also exclude them in their current form.

There is considerable scope for increased assessment of the quantitative fit of visual

word recognition tasks. For such assessment to be useful, it must test the correct (null)

hypothesis, that some proposed model is correct (not that two models are equivalent in

fit) and disfavor overcomplexity without disfavoring necessary complexity, as well as

accurately assessing the relevant variables. When such criteria are met, quantitative

analyses can give important constraint and impetus to the modeling of visual word

recognition, in this case including the rejection of the form of serial search model that

Murray and Forster (2004) used to generate their predictions, and indications that

instance models based on contextual diversity may explain effects attributed to word

frequency.
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Footnotes

1When differing numbers of linear parameters are involved, there is of course a

well-known R2-adjusted statistic for this. The correction has less influence when the

number of points fitted is high; this illustrates an additional point to our later argument

against the use of frequency bands.

2At least, the values of the predictor (vector) that are omitted from the experiment

have been chosen a priori.

3One could almost equivalently use the parametric bootstrap that estimates the

standard deviation of normal noise and then simulates on this basis. This would be

similar to Murray and Forster’s simulation procedure, except the standard deviation and

other parameters would be based directly on the data.

4The result is not surprising relative to Murray and Forster’s results: Their

(high-variance) simulation had an average difference of .9%, which is much smaller than

the 3.7% yielded by the experiment.

5Ideally, using the rule p̂ = #(t∗ > t)/B will give a distribution of P̂ that is

rectangular over [0, 1] when integrated over all possible data samples and estimated

parameters to correctly reflect the tail probability of the evidence. To perform in effect an

integration over the data and parameters in a finite fashion, instead of performing only a

bootstrap on T for the observed data, one can for each simulated data set perform a

bootstrap on the basis of P . Roughly speaking, this places weight on likely data sets and

hence likely parameters. One performs first a bootstrap sample, and calculates p̂. (1 − p̂)

now plays the role of t. Several more bootstrap replications are generated, and for each of

these, p̂ is calculated by estimating parameters and error distributions anew and

simulating a T distribution for each. The rank of the first level p̂ among the second level p̂

gives a second level p estimate. If the T chosen is not affected by parameter estimates,

then the estimated distribution of P̂ will be rectangular, and the two p values will be the
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same.

6We use this portion of the corpus because these frequencies are more predictive of

response times than those from the whole corpus. We attribute this to the

overrepresentation of college-level texts in the full corpus for undergraduate level readers.

7One further mistranscription was noted when we conducted our analyses, and we

used the true frequency of this item.

8For the BCP99 studies, these are from 2649, 2729, 2760 and 2774 items for

Kučera-Francis, TASA, CELEX and BNC respectively. For Elexicon, the corresponding

numbers are: 27053, 29461, 32838, 33991.

9Our results from the Kučera and Francis (1967) corpus for Murray and Forster’s

(2004) Experiment 1 were in the same direction as Murray and Forster’s, but both

correlations were smaller. This is not only due to the reduction in items and the use of

undergraduate raters to adjust the ranks; the same discrepancy occurs with the data

provided by Murray even when we used the ranks from the Appendix of their paper.

10An example of one of these analyses in R code is given at

http://www.warwick.ac.uk/~psrcaj/boot5p.R

11One of the non-significant tests is with the fit of a power law for Murray and

Forster’s (2004) Experiment 1 with Kučera and Francis (1967), which was a significant

difference in our preliminary analysis with frequency bands above. The earlier analysis

used the Kučera-Francis ranks estimates provided by Murray and Forster. These are less

favorable to the rank hypothesis because they retain more words in the estimated

vocabulary of undergraduates, which produces less of the distortive curvature illustrated

in Figure 5. That is, removing a greater proportion of words in our rankings to reflect the

empirical vocabulary of undergraduates exacerbates the problems of rank distortion from

the incompleteness of the Kučera-Francis counts.

12CELEX was omitted because (i) its corpus was not available to us, and (ii) it is
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anyway formed of so few documents (contexts) that the CD measure could reasonably

expected to perform poorly. (The documents do, however, contain many tokens.)
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Data Corpus rank WF log. WF power WF gen. pow. WF race WF exp. WF APEX WF PEX WF IA1 WF IA2 WF

MF Exp. 1 Kučera-Francis 21.13 20.35 21.62 21.62 20.93 19.69 21.65 21.65 21.40 21.68

TASA 18.96 20.76 20.90 22.14 22.13 21.59 22.14 21.66 22.13 20.88

CELEX 19.03 22.38 22.80 23.72 23.51 22.71 23.76 23.33 23.72 22.75

BNC 22.19 22.28 23.06 23.16 22.80 22.10 23.22 23.21 23.12 23.01

BCP99 Young Kučera-Francis 32.54 27.99 32.31 33.62 33.48 33.51 33.63 33.62 33.48 31.92

TASA 40.67 38.23 41.57 42.41 44.53 44.17 44.57 44.44 44.53 41.18

CELEX 35.55 35.11 38.49 42.80 42.67 42.49 42.80 42.55 42.67 37.99

BNC 36.27 33.19 35.72 39.73 39.68 39.36 39.74 39.46 39.68 35.32

BCP99 Older Kučera-Francis 27.80 23.20 27.69 27.80 27.76 27.04 27.81 27.80 27.81 27.50

TASA 34.90 31.42 35.10 35.57 36.08 35.13 36.16 35.94 36.16 34.77

CELEX 33.71 29.91 34.49 36.23 36.22 35.32 36.23 35.91 36.22 33.96

BNC 32.71 28.44 32.12 33.11 33.03 32.03 33.15 33.15 33.13 31.74

Elexicon Kučera-Francis 48.56 47.62 48.59 48.87 48.87 48.72 48.89 48.88 48.87 48.52

TASA 48.99 48.66 49.32 49.72 49.58 48.92 49.77 49.69 49.76 49.27

CELEX 48.72 50.78 51.03 51.80 51.75 51.26 51.87 51.82 51.84 51.01

BNC 51.10 51.71 51.76 52.63 52.52 51.92 52.71 52.62 52.70 51.76
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Data Corpus H1: log. WF power WF gen. pow. WF race WF exp. WF APEX WF PEX WF IA1 WF IA2 WF

MF Exp. 1 Kučera-Francis .039 .127 .466 .768 .726 .439 .256 .450 .068

TASA .000 .005 .019 .000 .002 .015 .005 .001 .007

CELEX .000 .000 .000 .000 .000 .000 .000 .000 .000

BNC .003 .043 .004 .122 .084 .021 .083 .043 .029

BCP99 Young Kučera-Francis .052 .707 .038 .000 .000 .003 .000 .000 .802

TASA .000 .000 .000 .000 .000 .001 .000 .000 .000

CELEX .000 .000 .000 .000 .000 .000 .000 .000 .000

BNC .000 .062 .000 .000 .000 .002 .000 .000 .015

BCP99 Older Kučera-Francis .324 .699 .637 .546 .496 .824 .746 .526 .654

TASA .000 .011 .003 .000 .000 .008 .000 .000 .011

CELEX .000 .001 .000 .000 .000 .000 .000 .000 .000

BNC .003 .248 .013 .001 .000 .064 .001 .005 .120

Elexicon Kučera-Francis .000 .008 .000 .000 .000 .000 .000 .000 .043

TASA .000 .000 .000 .000 .000 .000 .000 .000 .000

CELEX .000 .000 .000 .000 .000 .000 .000 .000 .000

BNC .000 .000 .000 .000 .000 .000 .000 .000 .000

Note — Values here are based on 999 bootstrap ‘replications’.



M
o
d
elin

g
L
ex

ical
D

ecision
34

T
ab

le
3

p̂
-V

a
lu

es,
W

o
rd

F
requ

en
cy.

H
a :

R
a
n
k

h
ypo

th
esis

Data Corpus H0: log. WF power WF gen. pow. WF race WF exp. WF APEX WF PEX WF IA1 WF IA2 WF

MF Exp. 1 Kučera-Francis .001 .491 .301 .040 .001 .311 .400 .146 .531

TASA .106 .283 .593 .770 .210 .391 .365 .760 .208

CELEX .100 .660 .548 .367 .044 .956 .506 .714 .447

BNC .009 .276 .713 .059 .193 .621 .290 .270 .209

BCP99 Young Kučera-Francis .000 .000 .352 .879 .026 .773 .382 .870 .000

TASA .000 .000 .004 .648 .000 .167 .244 .568 .000

CELEX .000 .060 .639 .998 .108 .316 .658 .994 .000

BNC .000 .000 .625 .943 .004 .149 .124 .932 .000

BCP99 Older Kučera-Francis .000 .011 .150 .055 .000 .112 .090 .203 .001

TASA .000 .000 .028 .035 .000 .234 .053 .421 .000

CELEX .000 .000 .385 .167 .000 .191 .112 .224 .000

BNC .000 .000 .088 .006 .000 .022 .042 .017 .000

Elexicon Kučera-Francis .000 .000 .306 .395 .000 .788 .444 .346 .000

TASA .000 .000 .409 .000 .000 .879 .017 .541 .000

CELEX .000 1.000 .206 .000 .000 .443 .644 .012 .996

BNC .000 .000 .047 .000 .000 .478 .005 .000 .000

Note — Values here are based on 999 bootstrap ‘replications’.
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Data Corpus rank CD log. CD power CD gen. pow. CD race CD exp. CD APEX CD PEX CD IA1 CD IA2 CD

MF Exp. 1 Kučera-Francis 21.17 20.48 21.73 21.73 21.40 20.57 21.76 21.76 21.65 21.74

TASA 19.94 21.18 21.43 21.92 22.65 22.02 22.67 22.08 22.65 21.40

BNC 21.91 23.04 23.07 23.11 22.97 22.63 23.25 23.25 23.19 23.07

BCP99 Young Kučera-Francis 34.49 30.45 34.29 35.55 35.24 35.52 35.55 35.54 35.24 33.97

TASA 42.75 39.06 42.87 45.98 45.87 45.71 45.98 45.91 45.87 42.42

BNC 37.78 38.48 38.51 41.14 40.81 41.11 41.11 41.11 40.81 38.51

BCP99 Older Kučera-Francis 29.70 25.13 29.61 29.75 29.75 29.36 29.75 29.71 29.75 29.43

TASA 36.52 31.90 36.23 37.28 37.24 36.33 37.28 37.11 37.29 35.85

BNC 34.27 33.26 33.94 34.73 34.71 34.43 34.91 34.91 34.71 33.90

Elexicon Kučera-Francis 49.24 48.47 49.30 49.63 49.59 49.57 49.63 49.62 49.59 49.25

TASA 49.78 49.25 50.00 50.45 50.36 49.77 50.48 50.38 50.47 49.94

BNC 51.54 52.60 52.60 53.13 53.07 52.69 53.20 53.17 53.16 52.60
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Data Corpus Ha: log. CD power CD gen. pow. CD race CD exp. CD APEX CD PEX CD IA1 CD IA2 CD

MF Exp. 1 Kučera-Francis .040 .081 .385 .426 .442 .326 .171 .227 .078

TASA .000 .017 .017 .000 .002 .027 .014 .000 .016

BNC .000 .025 .006 .066 .033 .017 .036 .022 .021

BCP99 Young Kučera-Francis .079 .810 .048 .000 .000 .002 .000 .000 .897

TASA .000 .011 .001 .000 .000 .001 .000 .000 .014

BNC .000 .000 .000 .000 .000 .000 .000 .000 .000

BCP99 Older Kučera-Francis .673 .844 .382 .160 .128 .356 .791 .248 .827

TASA .001 .343 .019 .001 .000 .047 .003 .000 .308

BNC .005 .340 .065 .001 .000 .036 .001 .027 .267

Elexicon Kučera-Francis .000 .002 .001 .000 .000 .000 .000 .000 .011

TASA .000 .000 .000 .000 .000 .000 .000 .000 .000

BNC .000 .000 .000 .000 .000 .000 .000 .000 .000

Note — Values here are based on 999 bootstrap ‘replications’.
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Data Corpus H0: log. CD power CD gen. pow. CD race CD exp. CD APEX CD PEX CD IA1 CD IA2 CD

MF Exp. 1 Kučera-Francis .003 .533 .302 .103 .008 .345 .434 .325 .481

TASA .064 .197 .502 .839 .229 .443 .292 .857 .143

BNC .277 .383 .524 .171 .072 .566 .396 .519 .376

BCP99 Young Kučera-Francis .000 .002 .426 .979 .178 .842 .467 .967 .000

TASA .000 .000 .173 .853 .001 .228 .268 .827 .000

BNC .000 .000 .574 .985 .336 .428 .441 .991 .000

BCP99 Older Kučera-Francis .000 .009 .266 .446 .000 .247 .073 .414 .002

TASA .000 .000 .393 .082 .000 .231 .033 .428 .000

BNC .000 .000 .133 .021 .000 .129 .225 .012 .000

Elexicon Kučera-Francis .000 .000 .487 .981 .000 .558 .493 .985 .000

TASA .000 .000 .276 .000 .000 .502 .016 .539 .000

BNC 1.000 1.000 .163 .000 .000 .512 .193 .000 1.000

Note — Values here are based on 999 bootstrap ‘replications’.
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H0: gen. pow. CD PEX CD APEX CD

Data

Corpus Ha: exp. CD APEX CD PEX CD IA1 CD IA2 CD race CD gen. pow. CD APEX CD IA1 CD IA2 CD IA1 CD IA2 CD

MF Exp. 1

Kučera-Francis .333 .549 .743 .561 .618 .522 .458 .193 .547 .665 .642 .730

TASA .038 .441 .273 .498 .117 .129 .998 .994 .999 .948 .715 .141

BNC .758 .597 .651 .958 .619 .472 .497 .603 .551 .589 .720 .697

BCP99 Young

Kučera-Francis .573 .489 .751 .389 .364 .476 .730 .796 .544 .425 .451 .383

TASA .681 .561 .545 .491 .490 .330 .969 .894 .975 .829 .492 .516

BNC .312 .146 .435 .336 .189 .283 .966 .863 .821 .591 .838 .590

BCP99 Older

Kučera-Francis .529 .288 .294 .766 .598 .605 .906 .892 .945 .805 .928 .626

TASA .597 .041 .676 .713 .686 .315 .995 .970 .999 .992 .908 .446

BNC 1.000 .981 .624 .568 .997 .909 .627 .420 .599 .792 .681 .851

Elexicon

Kučera-Francis .565 .978 1.000 .167 .016 .449 .985 .997 .814 .122 .036 .007

TASA .859 1.000 .739 1.000 .245 .080 1.000 1.000 1.000 .984 .078 .045

BNC .999 .999 .985 1.000 1.000 .039 1.000 1.000 1.000 .967 .997 .981

Note — Values here are based on 999 bootstrap ‘replications’.



Modeling Lexical Decision 39

Figure Captions

Figure 1. Estimated distribution of R2 (%) for power law fit to rank hypothesis data,

Murray and Forster’s (2004) Experiment 1, using condition means. Number of bootstrap

samples, B = 10,001. Vertical line is observed R2 for power law fit.

Figure 2. Estimated distribution of difference in R2 (%) between power law and rank fits

to rank hypothesis data, Murray and Forster’s (2004) Experiment 1, using condition

means. Number of bootstrap samples, B = 10,001. Vertical line is observed difference.

Figure 3. Estimated distribution of Hotelling T statistic comparing power law and rank

fits to rank hypothesis data, Murray and Forster’s (2004) Experiment 1, using condition

means. Number of bootstrap samples, B = 10,001. Vertical line is observed difference.

Figure 4. Estimated distribution of Hotelling T statistic comparing rank and power law

fits to power law hypothesis data, Murray and Forster’s (2004) Experiment 1, using

condition means. Number of bootstrap samples, B = 10,001. Vertical line is observed

difference.

Figure 5. Relationship between corpus estimates of frequency. (a) Comparisons involving

rank word frequency. (b) Comparisons involving log. word frequency. Whilst the

logarithmic transformation of frequency is approximately linearly related between corpora,

the relationship between ranks estimated from different corpora can be far from linear. As

these ranks were adjusted to accord with undergraduate vocabulary (size), the differences

must come from the incompleteness of some corpora.
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Postscript: Deviations from the Predictions of Serial Search

James S. Adelman and Gordon D. A. Brown

University of Warwick
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Murray and Forster (2004) claimed that rank frequency provided a better account of

lexical decision times than either log frequency or power law frequency, the latter being

dismissed on the grounds of over-flexibility. We (Adelman & Brown, 2008) argued that (i)

Murray and Forster’s use of the relatively small Kučera and Francis (1967) word frequency

counts biased the estimates of rank; (ii) the superiority in fit of the power law (and of some

other functions) could not all be attributed to over-flexibility in the manner Murray and

Forster claimed; and (iii) bootstrapping analyses designed to take flexibility into account

gave evidence of systematic deviations from several theoretically-motivated functional

forms, including rank and power, but not from some generalizations of the power function.

We concluded that the data could not be taken as support for serial search models.

Murray and Forster (2008) have suggested that our results do not contradict the

rank hypothesis (and in fact support it) because (i) an additional task-specific mechanism

could account for any discrepancy between data and model predictions; (ii) the increase in

R2 for rank when better-estimated ranks are used provides stronger evidence for rank, and

shows that the case for rank was not favored by a bias in rank estimates; (iii) Adelman

and Brown (2008) did not find a systematic failure of the rank function; (iv) assessment of

the rank function does not rely on estimation of parameters, but assessment of the power

function relies on parameters that lack theoretical interpretation or independent

justification, unlike those of the rank function; (v) their simulations of an instance model

show that such models cannot provide a plausible account of mean lexical decision

latencies; and (vi) data from different tasks, data sets, and measures converge in favor of

the rank function.

In response to Murray and Forster’s (2008) comments, we make the following

points. (i) An appeal to additional mechanisms can of course be made for any theory, but

— absent a detailed specification and test of such mechanisms — such appeal inevitably

raises serious concerns about unfalsifiability. (ii) All the models, not just the rank model,
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show an increase in R2 with the move to different corpora. This reflects less noisy

frequency estimates, and for the mega-study data, the inclusion of more lower-frequency

words, which leads to a broader frequency range. Therefore, such increases cannot be

taken as better evidence for rank. Moreover, such increases could mask any underlying

disadvantage to rank given by the use of more accurate ranks. The empirical evidence still

shows that the use of Kučera and Francis (1967) gives systematic underestimates of the

rank of low frequency words. (iii) We do not of course dispute the claim that there is a

significant correlation between rank frequency and lexical processing time, nor do we deny

the problems associated with a logarithmic function. However, we argued that the

improvement in fit shown by several other functions is significantly greater than would be

the case were the rank hypothesis correct. Indeed, of 144 possible tests of the rank

hypothesis in our Table 2, 117 gave evidence against it. Murray and Forster (2008)

correctly note variability of the p̂ values, but perfect repetition of p-values is not to be

expected, and very high values were only observed with the (suspect) Kučera and Francis

(1967) ranks. (iv) The parameters of the rank function may be interpreted within serial

search as the time for processes other than the serial search (intercept), and time taken to

search each word (slope), neither of which can be inferred without reference to data.

Furthermore, the sidetrack model has a non-linear mantissa parameter that was fixed by

Murray and Forster (2004) with reference to the data. Regarding theoretical

interpretation for the exponent in a power law (or more complex functions containing a

power law), we noted that the exponent in a power function from the model we described

can be related to the rate of increase in accessibility of traces once a word has been

presented (Colonius, 1993). In any case, we suggest it would be premature to dismiss

functions that require exponents, if such functions fit the data better than rank frequency,

just on the grounds that independent justification for the parameter values is not yet

available. (v) We entirely agree with Murray and Forster (2008) that the instance model
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they tested cannot be correct. Indeed, such a model is known to give results equivalent to

the plain power law, and we provided evidence against the fit of such a function ourselves.

We also note that use of a symmetrical distribution for trace retrieval implies a

symmetrical distribution for response times in the model, contrary to that typically

observed. Indeed, a further argument against the plain power law within the instance

framework we described is that it gives left-skewed response time distributions when the

exponent is in the range seen in the data; the same criticism does not apply to the

generalized power laws that are also consistent with the mean latencies. (vi) Whilst

presenting a model that also makes a prediction for error rates is laudable, it seems clear

that a core prediction of the account concerns latencies, including those in lexical decision.

Any systematic deviation from this prediction must therefore be viewed as problematic for

the model irrespective of its other performance, and we now argue that a similar deviation

may be observed across a variety of sources of latencies.

Figure 1 illustrates the last point with the Kučera and Francis (1967) ranks used by

Murray and Forster (2004, 2008). Lexical decision, word naming and eye movement data

all tend to show overprediction by rank for extreme ranks and underprediction for

intermediate ones. The sole exception is for the (somewhat rarely used) “sum of first three

fixations” measure from Murray (2001). Virtuously, the serial search model espoused by

Murray and Forster makes a strong, testable prediction. The systematic and

task-independent discrepancy between model predictions and data suggests to us — in the

absence of an extended model demonstrated to rectify the discrepancy — that the case for

serial search has yet to be adequately made.
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Figure Caption

Figure 1. Discrepancy between data and predictions of rank model (loess smoothed

plots, α = .8). Solid lines: lexical decision latences; dashed lines: word naming latencies;

dot-dash lines: eye-movement study fixation/gaze durations. Mega-study data: (a)

Seidenberg and Waters (1989) naming; (b) Spieler and Balota (1997) young adults naming;

(c) Balota and Spieler (1998) older adults naming; (d) Balota et al. (2002) Elexicon

naming; (e) Treiman, Mullennix, Bijeljac-Babic, and Richmond-Welty (1995) naming; (f)

Balota et al. (2002) Elexicon LDT; (g) Balota et al. (1999) older adults LDT; and (h)

Balota et al. (1999) young adults LDT. Murray and Forster’s data: (i) Murray (2001) sum

of 3 fixations; (j) Murray and Forster (2004) Exp. 3 KF; (k) Murray (2007) first fixation;

(l) Murray and Forster (2004) Exp. 3 GT; (m) Murray (2007) last fixation; (n) Murray

(2001) first fixation; (o) Murray and Forster (2004) Exp. 2; (p) Murray and Forster (2008)

1LD-foil LDT; (q) Murray and Forster (2008) DIS-foil LDT; (r) Murray and Forster

(2004) Exp. 1; (s) Murray and Forster (2004) Exp. 3 WM; and (t) Murray (2007) gaze.
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