
Individual differences in reading aloud:
A mega-study, item effects, and some models

James S. Adelmana,∗, Maura G. Sabatos-DeVitob, Suzanne J. Marquisa,
Zachary Estesc

aDepartment of Psychology, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K.
bDepartment of Psychology, University of North Carolina at Chapel Hill, Davie Hall, Chapel Hill, NC

27599, U.S.A.
cDepartment of Marketing, Bocconi University, Via Roentgen 1, 20136 Milan, Italy

Abstract

Normal individual differences are rarely considered in the modelling of visual

word recognition — with item response time effects and neuropsychological

disorders being given more emphasis — but such individual differences can

inform and test accounts of the processes of reading. We thus had 100 par-

ticipants read aloud words selected to assess theoretically important item re-

sponse time effects on an individual basis. Using two major models of read-

ing aloud — DRC and CDP+ — we estimated numerical parameters to best

model each individual’s response times to see if this would allow the mod-

els to capture the effects, individual differences in them and the correlations

among these individual differences. It did not. We therefore created an alterna-

tive model, the DRC-FC, which successfully captured more of the correlations

among individual differences, by modifying the locus of the frequency effect.

Overall, our analyses indicate that (i) even after accounting for individual dif-

ferences in general speed, several other individual difference in reading remain

significant; and (ii) these individual differences provide critical tests of models

of reading aloud. The database thus offers a set of important constraints for

future modelling of visual word recognition, and is a step towards integrating
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such models with other knowledge about individual differences in reading.

Keywords: visual word recognition, word naming, individual differences,

computational modelling, reading aloud

1. Introduction

The identification of individual words is one important component of read-

ing, and one that has been subject to extensive empirical studies, and also

theoretical work in the form of computationally explicit implemented mod-

els. One of the most extensively modelled tasks is word naming (or reading

aloud), in which participants read aloud words or pseudowords presented in

isolation. The major empirical phenomena that models have addressed are im-

paired reading — found in acquired and developmental dyslexia — and item

effects. Item effects are comparisons between words that differ on some specific

dimension, such as length or frequency, usually in terms of response times

(RTs).

According to the developers of models such as the dual-route cascaded

model (DRC; Coltheart, Curtis, Atkins & Haller, 1993; Coltheart, Rastle, Perry,

Langdon & Ziegler, 2001) and the connectionist dual process model (CDP+;

Perry, Ziegler & Zorzi, 2007; Zorzi, Houghton & Butterworth, 1998), and to

those who compare models to data (e.g., Adelman & Brown, 2008a; Besner,

1999; Reynolds & Besner, 2002, 2004), the goal of such modelling is a complete1

and detailed account of human visual word recognition, which is indexed by

a precise correspondence to the observed data. Whilst our understanding of

impairments to reading has informed theories of visual word recognition, the

constraints from these data are at a relatively high level. Consequently, the

finer details of word recognition processes have been more readily examined

using item effects shown by the average of a population of (mostly unimpaired,

1Although as the science progresses, models will be in some way incomplete — for instance,
these models lack semantic processes — the goal of completeness means that phenomena that the
models were not designed to explain can be used to test these posited details.
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young adult) undergraduate readers (but see Ziegler, Castel, Pech-Georgel,

George, Alario & Perry, 2008, for an exception).

1.1. Average data and individual differences

1.1.1. Importance of individual differences

This concentration on average effects in skilled readers has been an impor-

tant source of progress, but one could also raise the concern that this focus if it

stood alone would be too narrow for models that seek to be a complete expla-

nation of word recognition, because of individual differences in reading. One

such concern is practical: Knowledge about word recognition can be applied to

educational settings, including reading difficulties. If this knowledge included

a theoretical understanding of individual differences in reading, this might be

applied in the development of individual reading (and reading-related) ed-

ucation programs, tailored to the cognitive strengths and weaknesses of the

individual student. A related concern is that the array of knowledge from de-

velopmental studies of individual differences in reading renders the scope of

models that do not account for individual differences incomplete.

1.1.2. Misleading nature of average data

Moreover, it is well-known that average performance patterns can differ

from the average’s constituent patterns of performance (e.g., Brown & Heath-

cote, 2003; Estes, 1956).

1.1.3. Inferences from individual differences

In any case, patterns of individual differences in performance may simply

form additional constraints on models, giving indications as to the correct ac-

counts of the item effects that might not emerge from the average item effects.

Such indications may come because of the implications of common loci of ef-

fects. For instance, some effects — length and position of irregularity — are

attributed by models such as DRC and CDP+ to the left-to-right sequential pro-

cessing in spelling-sound conversion. If this is the case, these effects should be
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susceptible to the same causes of individual differences, and those individuals

who are particularly susceptible to one effect will also be particularly suscep-

tible to the other, inducing a correlation in the sizes of the effects. In contrast,

effects attributed to separate components, such as length and frequency might

be expected to show no such relationship, or a negative relationship if there is

some trade-off in emphasis between the components.

Using item RT effects nevertheless leaves a complex picture, because these

effects are influenced by several parameters, of which at least some should re-

flect individual differences, and the values these parameters take might be cor-

related. Depending on these correlations (and other distributional properties),

different patterns of correlations among effects might be found. For instance, a

dual-route model might have routes whose strengths trade-off against one an-

other, producing negative correlations among effects arising in the two routes,

but it could instead have positively correlated route strengths due to general

ability or speed, which would result in all effects correlating positively.

As a consequence, without data to constrain the distribution of parame-

ters of a given model for different individuals, it is essentially impossible to

give a general characterization of the patterns that model predicts. Future de-

velopments of models may allow many or all these parameters to be set by

reference to data about other cognitive abilities (and others may be fixed for

all participants). Ziegler et al. (2008) used tasks to measure individuals’ levels

of letter processing, (phonological) word processing and phoneme processing

and added noise to the corresponding systems of the DRC to reflect deficits in

these processes, with the magnitude of the noise varying parametrically with

the magnitude of the deficit; however, this approach is currently incomplete

as other parameters are also important for model performance and could vary

across individuals.

The data that are available to be used to constrain any simulations are the

to-be-explained reading aloud data. At first glance, this might seem to make it

too easy for a model to fit the data. To be sure, if we ask a complicated model

to adapt to one or two effects that may be summarized with a handful of data

4



points, it may be so easy that any model that complicated could fit the data. If

we instead ask a model to fit a complex of data, comprising of many effects and

their magnitudes, the constraints imposed by the structure of the model may

become more important than its flexibility (and this is true in general).

For instance, it may be true that for one set of parameter settings, a model

produces some effect A, and for another parameter set, effect B, but there are

no parameter sets for which both of A and B occur, whilst both effects are ev-

idenced in the same data set. That the explanations instantiated by the model

for these two effects are not compatible would be evidence against such a model.

In practice, the precise cause of the model’s problems will be difficult to isolate

when this is the case: Attempts to select parameter sets that reproduce the data

will show that the model does not predict one or other of the effects (and which

it does not show may vary with slight variations in procedure). Such a pattern

need not show that the model cannot predict the effect, but it nevertheless is

symptomatic of an inconsistency between model and data. The size of each

effect can also be considered a constraint for selecting parameter values, which

exacerbates the just-described difficulty. As more and more effects are consid-

ered, identifying any particular type of model misspecification becomes even

more difficult. The ability to detect problems with a model remains even if pa-

rameters are permitted to vary. To say this another way: A demonstration of

incompatibility for a particular model would be a falsification of that particular

model2.

Examining individual differences not only allows us to take this approach

further but also addresses a problematic assumption implied by ignoring such

differences: A valid objection to rejecting a model that does not show effects A

and B together is that there may be individual participants who show effect A

and some others who show effect B, but none who show both, exactly as the

model proposes. Only individual data can address such claims. Moreover, ex-

2A particular model here refers to a particular version of a model, not all models that might
bear the name.
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amining individual data allows more patterns to be added to each effect and its

average size: First, the several patterns of compatible effect sizes of each par-

ticipant, and second, the summary of this by way of the correlations of effects.

In summary, constraints from data on models come from data patterns in-

terpreted as effects and the compatibility of these effects, which we may aug-

ment with patterns from individual differences because these give evidence of

further (and less misleading) patterns of compatibility that models must ad-

dress.

1.1.4. Insufficiency of comparisons of good and poor readers

It is thus important to attempt to isolate variation on several dimensions

to distinguish different possible mechanisms involved in visual word recog-

nition. Whilst reading success is the ultimate phenomenon of interest, item

effects in word naming are side-effects of the processes involved in the visual

word recognition component of reading, and these effects constrain the nature

of these processes beyond what they achieve to how they achieve it. Various

studies have examined how these effects differ between better and poorer read-

ers (e.g., Ashby, Rayner & Clifton, 2005; Kuperman & Van Dyke, 2011) but sev-

eral factors can lead to better or poorer reading in humans (see, e.g., McClung,

O’Donnell & Cunningham, 2012) and in models. Moreover, there might be in-

formative (co)variation in item effects that does not affect reading success per

se.

1.2. Previous research

1.2.1. Variability in responses

Ziegler et al. (2008) have successfully used external cognitive predictors to

modify parameters controlling noise injected into the DRC model so as to pre-

dict type of words that would be susceptible to word naming errors. Moreover,

there is a further line of individual differences evidence relating to responses

(rather than their latencies) that constrains models: Andrews & Scarratt (1998)

found that when several individuals were asked to read the same nonwords,
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many stimuli had multiple pronunciations. Pritchard, Coltheart, Palethorpe

& Castles (2012) recently compared DRC and CDP+ on a new data set show-

ing similar results. Zevin & Seidenberg (2006) obtained comparable levels of

variation in PDP simulations by using different (randomly selected) sequences

of words in the training trials for different individuals. Thus, they attributed

the whole effect to unsystematic individual differences. However, this seems

unlikely to be the correct explanation. The magnitude of difference shown is

similar to that which can be explained by systematic individual differences in-

troduced by reading instruction (Thompson, Connelly, Fletcher-Flinn & Hod-

son, 2009). Moreover, there are likely additional differences due to cognitive

ability (McClung et al., 2012; Kuperman & Van Dyke, 2011); and there may be

variability in responding that occurs within individuals (in none of these stud-

ies did a participant read the same stimulus twice) rather than being due to

individual differences.

1.2.2. Individual differences in item effects and external predictors

Some other studies have directly addressed the RT differences in word

recognition tasks. One such line of research seeks to link measures of or-

thographic knowledge or experience to lexical decision performance; there is

evidence (Chateau & Jared, 2000; Sears, Siakaluk, Chow & Buchanan, 2008)

that print exposure predicts the strength or quality of orthographic-lexical pro-

cesses in lexical decision as assessed by neighbourhood size and frequency

item effects. That the neighbourhood size and frequency effects are both pre-

dicted by the same variable suggests of a common locus related to the strength

or quality of orthographic-lexical processes. In turn, this suggests these effects

should be positively correlated.

A related line of research addresses a similar issue, but with form priming

effects: Better spellers show inhibitory priming effects where poorer spellers

show facilitatory ones, consistent with an account in terms of precision of lexi-

cal representations (Andrews & Hersch, 2010). Vocabulary has also been linked

to word length effects (Butler & Hains, 1979), and frequency effects in both first
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and second languages (Diependale, Lemhöfer & Brysbaert, 2013); and more

generally Yap, Balota, Sibley & Ratcliff (2012) found that higher vocabulary

was associated with more rapid responding, and lesser sensitivity to item ef-

fects.

1.2.3. Individual differences in item effects and relations among them

More similarly to our present approach, Yap et al.’s (2012) analysis of word

naming and lexical decision latencies from the English Lexicon Project (ELP:

Balota, Yap, Cortese, Hutchison, Kessler, Loftis, Neely, Nelson, Simpson &

Treiman, 2007) also included an analysis of the correlations of item effects (or

rather their principal components). One important question they addressed

was whether two distinct processes — linked to larger (word-sized) and

smaller (grapheme-sized) units — might be seen to trade-off across individ-

uals. They found no such evidence, but their measure of the process with

smaller units was based on effects not necessarily due to the smaller unit

process in implemented models such as the DRC (Coltheart et al., 2001). More-

over, the ELP followed the mega-study approach of seeking to obtain good

estimates of average performance of essentially the whole of English, with

individual differences analyses as a secondary goal (see also Balota, Cortese,

Sergent-Marshall, Spieler & Yap, 2004; Balota, Yap, Hutchison & Cortese, 2012).

Some of the ways in which the ELP was designed to address the primary goal

and makes it useful for other types of analysis did however mean that the

individual differences analyses Yap et al. could perform did not permit a direct

comparison with model simulations. First, participants were not assessed on

the same words as one another, which weakens the comparability of effect

magnitude estimates from different individuals. Second, most words in the

experiment were polysyllabic because most English words are polysyllabic;

whilst this makes the sample more representative, many predictors and most

models are only applicable to monosyllables. This limitation on the scope

of the models meant that Yap et al. could not directly address these models.

Third, assessment was based on principal components of item variables, not
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directly upon theoretically interesting item effects because lexical variables

underlying item effects are intercorrelated in the language. Such a procedure

might, however, subsume effects with different causes in a single principal

component3. Finally, adjustments for general speed could not be based on

individual participant reliabilities, because participants did not read the same

word more than once. Our observation that existing databases were not

optimal for the kind of individual differences modelling that interested us

motivated the collection of new data regarding major item effects for later

modelling.

1.3. Major item effects

Certain item effects are so ubiquitous as to be taken as basic effects that a

model must incorporate, whilst others are important because they highlight

contrasts between theoretical positions. The list of variables that have been

claimed to affect word naming response times is extensive, so this discussion

focusses on those that have received a modelling response and whose source

in a given model would be important for understanding individual differences

(and so were included in the experiment described below; for a longer list, see

Adelman, 2012). We will argue that individual differences among these readers

can also be informative about the mechanisms of reading. Such individual

differences will be seen in theoretically interesting item effects, and not only

overall performance.

1.3.1. Frequency

Response times are shorter for more frequent words than less frequent

words (e.g., Forster & Chambers, 1973). In models that posit parallel activation

of individual units for each word (localist models), the difference may reflect

a lower required threshold of activation for frequent words (e.g., Morton,

3Correlations among effect sizes across people are suggestive of cognitive locus in visual word
recognition. But the correlations used in the principal components analysis are correlations among
lexical variables across words, wich are suggestive of locus in language evolution, not locus in
visual word recognition.

9



1964), or a biasing input that inhibits activation of infrequent words (e.g.,

Coltheart et al., 2001). In models that learn parallel connections without

such individualised units (distributed representation models), more relevant

weight adjustments occur for frequent words (e.g., Seidenberg & McClelland,

1989). Other models suggest that more frequent words have higher priority

in a sequential search of known lexical items (e.g., Forster, 2012). In terms

of individual differences, effects that correlate positively with the size of the

frequency effect might be related to a process sensitive to details of individual

words; such a process is a lexical process or route. Those that correlate

negatively might be related to another process that complements and trades

off with the lexical process.

1.3.2. Length and lexicality

Nonwords and to a lesser extent low frequency words are read more slowly

if they are long (have many letters) than if they are short (e.g., Weekes, 1997).

Dual-route theorists have interpreted this as due to a left-to-right nonlexical

process (composing a pronunciation on the basis of the components of its

spelling) that is slower to complete for longer stimuli, and is more influential

for stimuli with an absent or weak lexical route contribution to pronuncia-

tion (Coltheart et al., 2001). Alternative interpretations include articulation

preparation being sensitive to utterance length and reduced quality of the

input code for longer words due to information compression (Chang, Furber

& Welbourne, 2012); these mechanisms affect different stages of the word

naming process, and so are not mutually exclusive. Nonwords are also read

slower than words, because of their lack of a stored representation. The size of

this advantage for words will depend on the relative efficiency and strength of

the two routes: A stronger lexical route and weaker nonlexical route should

lead to a greater lexicality effect in favour of words. Whether individual

differences in the length effect can be modelled as differences in the efficiency

of spelling-sound translation (in a manner compatible with other effects) will

be informative as to its cause.
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1.3.3. Neighbourhood size

The neighbourhood of a word is the set of words that are similar to it — its

neighbours — and the neighbourhood size (often denoted N, following Colt-

heart, Davelaar, Jonasson & Besner, 1977) is the count of these neighbours. A

variety of types of neighbourhood size have been considered, most commonly

the orthographic (or Coltheart’s) N, where a neighbour is defined as a word

that can be created by replacing one letter with another in the same position

(e.g., BOG is a neighbour of DOG). On balance, words with more neighbours

are read faster (Andrews, 1997; Mathey, 2001) albeit with several qualifica-

tions. The effect is somewhat surprising insofar as identifying a word uniquely

should be harder if it has many neighbours with which it could be confused.

This effect arises in models because similarly spelled words are usually simi-

larly pronounced thus providing partial support for the correct pronunciation,

although Andrews (1992) offered an alternative explanation in terms of top-

down support for letter identities. Adelman & Brown (2007) conducted analy-

ses of megastudies that suggested the effect was limited to phonologically sim-

ilar orthographic neighbours (the phonographic neighbours, Peereman & Con-

tent, 1997), consistent with the phonologically-based interpretation. Indeed,

the number of phonological neighbors (i.e., ignoring orthography) appears to

have a unique influence (Mulatti, Reynolds & Besner, 2006; Yates, 2005), al-

though this may require orthographic overlap (Grainger, Muneaux, Farioli &

Ziegler, 2005). Given the strong correlations among these variables, we did not

select items to manipulate them orthogonally for the present study. The extent

to which neighbors are activated is one way in which individual differences

in reading skill have been found to manifest in other paradigms (Andrews &

Hersch, 2010; Sears et al., 2008).

1.3.4. Consistency

The kind of association of similar phonological forms for similar ortho-

graphic forms described above could be considered in more general terms as

spelling-sound consistency. Most commonly, such consistency has been con-
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sidered empirically in terms of rime consistency, the extent to which words of

one syllable that have the same bodies (the end of the orthographic word from

the orthographic vowel onwards) have the same rimes (the end of the phono-

logical word from the vowel onwards). For instance, MINT and LINT rhyme

and so are consistent, or friends, but PINT is inconsistent with them, and is an

enemy of both. Words that have many friends and few enemies are read quicker

(e.g., Jared, McRae & Seidenberg, 1990). This may be explained through par-

tial support from similar words, although it has alternatively been proposed

that body-sized units may be used in a nonlexical conversion process (e.g.,

Coltheart, 1980, 2012) of a type that is usually implicated in effects of regular-

ity. The relationship of individual differences in consistency effects to those in

neighbourhood size and regularity effects ought to constrain its interpretation.

1.3.5. Regularity and Position of Irregularity

Such regularity effects give an alternative or additional reason that a word

like PINT might be read slowly: If there is a nonlexical conversion that trans-

lates spelling to sound using (grapheme-sized) sublexical rules such as I → /I/,

then this mechanism will produce the incorrect pronunciation, which would

conflict with or fail to support the correct (known) pronunciation. Words that

follow such rules, known as regular words, are read more quickly than exception

words that do not. Moreover, exception words whose departure from the rule

is to the left in the word exhibit a greater slowing relative to their controls than

do those whose irregularity is further to the right (Rastle & Coltheart, 1999).

One major debate in the reading aloud literature has surrounded whether such

effects can be subsumed under processes sensitive to various forms of consis-

tency (e.g., Zorzi, 2000) or require a rule-based approach.

The relationship between regularity and consistency effects is important to

ascertain their interpretations, and the position of irregularity effect’s relation-

ship to length effects gives a test of their supposed common locus.
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1.4. Models

Models that have been implemented to make quantified predictions

about word naming are the dual-route cascaded model, the connectionist

dual-process model and a variety of backpropogation models.

1.4.1. Dual-route cascaded model

The DRC (Coltheart et al., 1993, 2001) as a dual-route theory combines two

routes: a lexical route that uses knowledge of specific words, retrieving a stored

pronunciation, and a nonlexical route that parses stimuli into units smaller

than the word to determine a pronunciation. Its lexical route is based on an

extension of the interactive-activation and competition model (McClelland &

Rumelhart, 1981). Its nonlexical route uses a set of classical rules for convert-

ing graphemes (letters or short sequences of letters that represent individual

phonemes) into phonemes; these are applied in a temporally left-to-right fash-

ion. The nonlexical rule route is responsible for length effects, the regularity

effect, and the regularity effect’s sensitivity to position. To the extent that the

strength or speed of this route might vary, we would expect the magnitude

of these three effects to be controlled by this strength/speed and so correlate

positively with another.

Frequency effects have their locus in the lexical route, as do neighbourhood

effects (Reynolds & Besner, 2002), so naı̈vely we would infer these should pos-

itively correlate. Lexicality effects relate to the advantage conferred by the lex-

ical route to words, and so should also be in this group, although this may not

be the only influence on lexicality effects.

The situation with consistency effects is less clear. Whilst some consis-

tency effects (those of Jared, 1997) have been explained as nonlexical route

confounds, Coltheart (2012) has suggested that parameter modifications might

make the model predict consistency effects observed without such confounds

via the lexical route in the same manner as neighbourhood effects. Exploring

parameter sets to match individual participants will discover whether this is

feasible.
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In any case, these can only be tentative predictions because (i) verbal anal-

yses may not accurately reflect the properties of the mechanisms in the model;

(ii) simulations with arbitrary parameter values need not reflect the behavior

of the model in other areas of the parameter space; and (iii) exhaustive analysis

of the parameter space is computationally infeasible.

1.4.2. Connectionist dual-process model

The CDP+ (Perry et al., 2007) uses a similar set of lexical components to

the DRC, but its nonlexical components are based on a two-layer connectionist

learning procedure (in constrast to DRC’s symbolic rules), as well as having

slightly different phonological representations and decision rule. The connec-

tionist learning procedure implies that this system uses information about how

often different phonemes associate with particular graphemes, rather than as-

sociating individual rules to graphemes. At the level of assigning effects to

components, this more graded nonlexical route is the source of consistency

effects. As such, consistency effects clearly should be more associated with

length and exception effects than lexical frequency effects. Otherwise, our (ten-

tative) expectations regarding the CDP+ would be quite similar to those for the

DRC.

1.4.3. Backpropagation (“PDP”) models

A variety of models have used the connectionst backpropagation learning

rule to learn connection weights in a multilayer network with hidden units

to model various aspects of visual word recognition (e.g., Plaut, McClelland,

Seidenberg & Patterson, 1996). These are commonly known as parallel-

distributed processing — or PDP — models (although this is arguably a

broader term), and are conceptualised within a ‘triangle’ framework described

by Seidenberg & McClelland (1989). This framework posits three explicit

representations of stimuli — orthographic, phonological, semantic — that are

each linked to the other by way of distributed processing (in hidden units), di-

agramatically forming a triangle. Stimuli are read aloud by influences coming
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from the two routes linking orthographic and phonological representations:

the direct route (via only hidden units) and the semantically-mediated route.

Coltheart (2012, Table 1.1) lists six variants of this type of model that have

been used to model various effects. Coltheart points out that these models

have each been developed to model a relatively circumscribed set of effects

that does not always subsume those of its predecessors, and, moreover, that

differences between a model and its predecessors are not always justified by

reference to a better explanation of the particular phenomena the later model

explains. Thus there is no current model that represents the sum knowledge

of the best model of its class (to which its predecessors are an approximation).

This contrasts with the approach of DRC and CDP+ modelers, whose later

models are presented as replacements of previous models as the state of the

art, justified by improvements in overall compatibility with the data.

This difference reflects a difference in modeling goals: For the most part,

PDP modelers have argued that modeling is and should be used to elucidate

general principles (Seidenberg & Plaut, 2006) and to show that these can lead

to a small number of empirically observed phenomena of current key interest.

For this reason, compatibility is only evidenced between models similar at the

level of general principles, with lower-level detail free to vary for convenience.

In contrast, such lower-level detail is considered to be of theoretical interest

by other modelers (including Coltheart et al., 2001; Perry et al., 2007), because

such details affect the predictions the models make, and so presumably are

critical to understanding the precise behavior of humans across a variety of

situations and phenomena. Thus (in the absence of an interacting factor that

influences a parameter; e.g., Rastle & Coltheart, 1999, Exp. 2) compatibility is

sought within a single model with no changes. For PDP modellers, the expla-

nation of a phenomenon is created by the modeler and necessarily precedes

and motivates the model, which validates the explanation if it produces the

phenomenon. For other modellers (in this context, Coltheart and colleagues

and Perry and colleagues), analysis and examination of a model may give the

explanation for a phenomenon (whilst examination of phenomena may also
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suggest mechanisms a model requires); such an explanation is validated by

the validation of the model by producing several phenomena.

The current approach to individual differences relies upon having a single

model — except for the possibility of parameter changes — for different effects

to see what the detailed mechanisms of that model imply about individual dif-

ferences. This is only a coherent goal (i) if the model is an account of the effects

in which individual differences are being examined, and (ii) if the model is in

fact a hypothesis about a complex of mechanisms. This has not been the case

for the PDP models listed by Coltheart (2012), and so it makes little sense to

investigate them in this manner4. Thus, we could not simultaneously model

individual differences in these effects with these PDP models because no single

PDP model explains all these effects: each phenomenon has its own explana-

tion within the broader framework, rather than them sharing mechanisms in a

single computational model. Our modelling, therefore, does not include a PDP

model.

1.5. The present study

We provide the first study designed to examine individual differences in

item effects in a way that can directly assess models. We sought to apply

to word naming the correlational logic of individual differences and models

described above (§1.1.3), mindful that verbal analysis of models is simplistic

compared to the actual function of the model processes. We collected new

data to examine individual differences in the major item effects — frequency

(e.g., Forster & Chambers, 1973), irregularity (e.g., Rastle & Coltheart, 1999; Sei-

denberg, Waters, Barnes & Tanenhaus, 1984), consistency (e.g., Glushko, 1979;

Jared et al., 1990), length (e.g., Weekes, 1997), and neighbourhood size (e.g., An-

drews, 1992), and the correlations between them. We also examined the ability

of two existing implemented models of reading aloud — the DRC (Coltheart

4One recent backpropagation model has gone some way towards including key effects ad-
dressed by no previous such model (Chang et al., 2012), but it does not simulate response times (it
produces error scores that do not relate directly to processing time).

16



et al., 2001) and CDP+ (Perry et al., 2007) models — to account for these differ-

ences in simulations. To the extent that the models cannot account for the data,

our results would identify problems with these models and suggest how they

might be corrected.

2. EXPERIMENT

2.1. Method

2.1.1. Participants

Participants (N = 100) were 32 staff and 54 students of the University of

Warwick, supplemented by 14 others who responded to local advertisements.

Ages ranged from 17 to 55 years (mean 28 years, median 23 years). All were

tested as part of a larger study and were paid (prorated over the whole study)

approximately £10 for their participation in this experiment (ca. U.S. $15). A

questionnaire was administered to gather information about the participants’

language, academic and work history and to screen for any potential reading

or learning disabilities. All participants were native English speakers and all

but two reported normal or corrected-to-normal vision (the others reporting

essentially monocular vision with normal corrected acuity).

2.1.2. Stimuli

Details follow of the 592 monosyllabic words and 93 nonwords that were

used to measure key marker effects in visual word recognition including: fre-

quency, length (and lexicality), neighbourhood size, position of irregularity

(and regularity), and consistency (and regularity). For the first three effects,

new stimulus sets were selected using CELEX (Baayen, Piepenbrock & Gulik-

ers, 1995). For the remaining two effects, stimulus sets were taken from Rastle

and Coltheart (1999, Exp. 1) and Jared (2002, Exp. 1). Due to programming

error, the 26 stimuli (of which 18 were exception words) that were in both Ras-

tle and Coltheart’s and Jared’s experiments were repeated, and data from the

second trial with a given word in any session overwrote that for the first.
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Table 1: Mean stimulus characteristics (standard deviations in parentheses) for words selected to
test frequency effects in naming.

1 ppm 3 ppm 9 ppm 27 ppm 81 ppm F(4, 80) Sig.

CELEX
Freq. 20.24 (3.16) 67.24 (15.70) 187.53 (44.28) 546.62 (45.02) 1586.19 (318.39)

loge Freq. 3.00 (0.16) 4.19 (0.21) 5.21 (0.22) 6.30 (0.08) 7.35 (0.18)

SUBTLEX
Freq. 2.10 (2.62) 7.20 (8.38) 13.06 (10.24) 68.31 (123.44) 106.30 (106.99)

loge Freq. 0.15 (1.15) 1.27 (1.30) 2.24 (0.89) 3.37 (1.22) 4.30 (0.85)

Orth. N 10.85 (4.85) 11.10 (6.28) 11.95 (4.59) 11.00 (6.55) 11.57 (4.86) 0.275 ns
PhGr. N 8.10 (3.40) 8.57 (5.95) 10.00 (4.31) 8.57 (5.81) 7.67 (4.42) 1.184 ns
Consist. 0.93 (0.10) 0.93 (0.17) 0.96 (0.07) 0.94 (0.17) 0.92 (0.17) 0.272 ns

Note — F-values are for a repeated-measures ANOVA (on the basis of
matched quintuples) predicting the lexical statistic from the frequency band.
Freq. stands for frequency. CELEX frequencies are based on raw values (per
17.9 million); SUBTLEX frequences are per million. ppm stands for parts
(i.e. tokens) per million. Orth. N stands for orthographic neighbourhood
size. PhGr. N stands for phonographic neighbourhood size. Consist.: Rime
consistency calculated on a types basis (friends per friends plus enemies).

Frequency stimuli. 21 quintuplets of words were selected from five CELEX fre-

quency bands, defined by the ranges 15–26, 51–107, 132–308, 479–657, and

1087–2649 (raw frequency; per 17.9 million words), each designed to be 3 times

(or 1.1 loge-units) more frequent than the last. Similar differences between

bands were shown with the SUBTLEX frequency norms (Brysbaert & New,

2009). Within each quintuplet, words were matched on orthographic length

and onset, and as closely as possible on orthographic N and rime consistency.

All words were regular according to DRC rules. Summary statistics are given

in Table 1, and the items are listed in Appendix A.

Neighbourhood stimuli. 42 pairs of words were selected with one member of

each pair low on neighbourhood size (both orthographic and phonographic)

and the other high on neighbourhood size. Items in each pair were matched

on onset and orthographic length and approximately matched on total CELEX

frequency. All were regular according to DRC rules. After data collection,

SUBTLEX frequencies were examined, which revealed that two stimuli (BITCH
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Table 2: Mean stimulus characteristics (standard deviations in parentheses) for words selected to
test neighbourhood effects in naming.

Low N High N F(1, 39) Sig.

Orthographic N 4.85 (1.96) 15.68 (3.97)
Phonographic N 3.68 (1.72) 12.65 (3.25)
Phonological N 19.75 (13.09) 29.43 (9.75)

Rime Consistency .96 (.14) .93 (.14) 1.12 ns

CELEX
Frequency 745.3 (1833.2) 787.4 (1980.8) 0.01 ns

loge Frequency 4.93 (1.84) 4.99 (1.78) 0.02 ns

SUBTLEX
Frequency 35.7 (96.1) 42.1 (129.3) 0.12 ns

loge Frequency 1.66 (1.95) 2.02 (1.77) 2.48 ns

Note — F-values are for a repeated-measures ANOVA (on the basis of
matched pairs) predicting the lexical statistic from the neighbourhood condi-
tion. CELEX frequencies are based on raw values (per 17.9 million); SUBTLEX
frequences are per million. Rime consistency was calculated on a types basis
(friends per friends plus enemies). N stands for neighbourhood size.

and NOPE) were of substantially higher spoken frequency than the stimuli to

which they were paired (BEARD and NOUN); these pairs were excluded from

analysis.

Summary statistics (for the 40 analysed pairs) are given in Table 2, and the

items are listed in Appendix B.

Length stimuli. 31 triplets of three, four, and five-letter monosyllabic words

were selected. In each triplet, words were matched on onset and length and

approximately matched on CELEX frequency and rime consistency; SUBTLEX

frequency was also not significantly associated with length. Neighbourhood

sizes could not be matched. All stimuli were regular according to DRC rules.

Summary statistics are given in Table 3 and items are listed in Appendix C.

93 nonwords whose regular pronunciation was monosyllabic were chosen to

match the word stimuli in length and phonemic onset (when pronounced reg-

ularly).
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Table 3: Mean stimulus characteristics (standard deviations in parentheses) for words selected to
test length effects in naming.

3 letters 4 letters 5 letters F(2, 60) Sig.

CELEX
Frequency 629.66 (634.79) 396.61 (515.93) 414.32 (522.42) 0.658 ns

loge Frequency 5.27 (1.33) 5.29 (1.27) 5.33 (1.27) 0.498 ns

SUBTLEX
Frequency 37.19 (64.76) 24.99 (37.18) 40.38 (85.99) 0.798 ns

loge Frequency 1.60 (2.54) 1.66 (2.17) 1.74 (2.30) 1.365 ns

Rime Consistency 0.96 (0.05) 0.95 (0.13) 0.98 (0.06) 0.792 ns
Orthographic N 16.32 (4.32) 12.03 (4.25) 4.13 (1.77) 103.230 p < .001
Phonographic N 13.52 (4.07) 9.36 (4.03) 3.61 (1.65) 67.146 p < .001

Note — F-values are for a repeated-measures ANOVA (on the basis of matched
triples) predicting the lexical statistic from the length (as a factor). CELEX
frequencies are based on raw values (per 17.9 million); SUBTLEX frequences
are per million. Rime consistency was calculated on a types basis (friends per
friends plus enemies). N stands for neighbourhood size.

Consistency stimuli. These were taken from Jared (2002, Exp. 1). The stim-

uli were 160 low-frequency monosyllabic words, divided into 80 inconsistent

words (40 exception words, 40 regular words) and 80 consistent words (all reg-

ular according to DRC rules). Consistency was defined on the basis of word

bodies. The 80 regular-consistent words were divided into four groups of

20 and matched to the 40 exception-inconsistent and 40 regular-inconsistent

words for length, initial letter and phoneme, frequency, mean summed fre-

quency of friends and mean bigram frequency.

Position of irregularity stimuli. These were selected from Rastle and Coltheart

(1999, Exp. 1). They included 88 monosyllabic, three- to six-letter exception

words from the CELEX database whose divergence from the DRC’s grapheme-

phoneme conversion rules occurred at the first letter position (20), second letter

position (39), or third letter position (29). Each exception word was matched

to one of 88 regular words on number of letters and initial phoneme, and all

stimuli were low frequency.
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2.1.3. Apparatus

The stimuli were presented on a Sony CPD-G200 17” monitor driven by an

NVIDIA GeForce 7025 graphics card. Responses were collected via a Plantron-

ics Audio 370 gaming headset with microphone attached to an Ensoniq 5880

AudioPCI sound card. To code response (voice onset) times, the third author

conducted a visual and auditory inspection of wave forms on the basis of an

estimate output by custom voice key software written by the first author for

the analysis of Adelman, Marquis, Sabatos-DeVito & Estes’s (2013) data. Error

responses, those where no single onset could be identified, and those where

the initial phoneme was realised in a non-standard manner (e.g., /θ/ for /t/)

were excluded; for words, all dictionary-listed variants were accepted as cor-

rect, and for nonwords, any pronunciation that appeared to be reasonably con-

structed by rule or analogy from the properties of English words was accepted

as correct.

2.1.4. Procedure

Participants attended three separate sessions, each on a different day. Dur-

ing each session, all 711 stimuli5 were presented in newly randomised order.

Each stimulus was presented on the computer screen for 1500 ms; the inter-

trial interval varied between 600 and 1000 ms. Participants wore a gaming

headset with microphone, which recorded vocal responses. Participants were

instructed to read the stimuli aloud as quickly and clearly as possible as they

appeared. They were warned that some stimuli would be unfamiliar, and in

those cases, they should take their best guess.

2.2. Results

Our empirical analyses of the data covered the analysis of the replication

of the major item effects; the replicability of these effects over sessions; a com-

5This number is made up of 105 (5 × 21) frequency stimuli; 84 (2 × 42) neighbourhood stimuli;
93 (3 × 31) word length stimuli and 93 nonword length stimuli; 160 Jared stimuli; and 196 (2 × 88)
Rastle and Coltheart stimuli. The number 711 thus includes the 26 stimuli that were common to
the Rastle and Coltheart and Jared stimuli and were erroneously repeated.
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parison with a past mega-study; estimation of effects for individuals and the

effects’ (test-retest) reliabilities; observation of the effect distributions; and ob-

servation of the correlations of the item effects.

2.2.1. Replication of standard effects

As a check on our manipulations, we compared the conditions for each of

them using by-subjects and by-items ANOVAs. The condition means associ-

ated with these comparisons are in the first numerical column in Table 4, and

a summary of the pattern of significance is in Table 5. Two-tailed p-values are

reported in the text except when F is very small or p < .001 (disambiguated by

the F-value).

Frequency effect. A frequency effect, such that more common words are read

more quickly, has been observed repeatedly in word naming (e.g., Forster &

Chambers, 1973), though there are some alternative suggestions for the un-

derlying causative factor (e.g., Adelman, Brown & Quesada, 2006; Cortese &

Khanna, 2008).

Such an effect of frequency was significant by subjects, F1(4, 396) = 33.59,

and by items, F2(4, 80) = 11.16.6

The bulk of the effect was carried by the linear trend (in log. frequency),

F1(1, 396) = 123.74, F2(1, 80) = 40.60, with the departure from linearity being

significant only by subjects, F1(3, 396) = 3.54, p = .015, F2(3, 80) = 1.34, p =

.266.

Overall, the frequency effect replicated previous studies.

Neighbourhood size. Greater orthographic neighbourhood size has often been

associated with shorter naming latencies, especially in English (see Andrews,

1997; Mathey, 2001, for reviews), although other neighbourhood measures

6The 1 and 3 ppm bands clearly did not differ from one another, F < 0.04 in both analyses, and
nor did the 9 and 27 ppm bands, F < 0.7. The difference between the 27 and 81 ppm bands was
significant by subjects, F1(1, 396) = 7.35, p = .007, but not by items F2(1, 80) = 2.55, p = .114,
but the difference between 9 and 81 ppm was significant in both analyses, F1(1, 396) = 12.19,
F2(1, 80) = 4.08, p = .047.
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new data SB97 DRC CDP+ DRC-FC

Frequency
1 ppm 552 469 555 554 553
3 ppm 552 460 551 552 550
9 ppm 540 457 547 550 549

27 ppm 538 456 543 548 548
81 ppm 532 453 540 548 549

Neighbourhood size
few 544 464 545 548 547

many 542 463 546 548 547

Word length
3 letters 542 454 544 551 549
4 letters 551 458 549 553 551
5 letters 550 466 552 555 553

Nonword length
3 letters 587 n/a 593 593 597
4 letters 609 n/a 604 602 601
5 letters 631 n/a 622 616 612

Jared (2002) stimuli
Exception (E>F) 561 479 558 550 557

Controls 544 462 546 547 545
Exception (F>E) 548 473 556 547 552

Controls 534 464 542 543 543
Inconsistent (E>F) 562 468 550 549 548

Controls 545 463 549 549 548
Inconsistent (F>E) 527 470 532 534 532

Controls 532 470 533 532 532

Rastle & Coltheart (1999) stimuli
Exception Pos. 1 617 500 591 581 586

Controls 546 464 552 555 553
Exception Pos. 2 563 472 557 549 553

Controls 548 462 548 549 549
Exception Pos. 3 553 490 559 549 556

Controls 552 484 553 552 552

Table 4: Condition means (ms) for data and simulations. SB97 = Spieler & Balota (1997). DRC
= Dual-route cascaded model. CDP+ = Connectionist dual process model. DRC-FC = DRC with
frequency-weighted connections.

have been proposed (e.g., Adelman & Brown, 2007; Yarkoni, Balota & Yap,

2008).

The slight advantage for words with dense neighbourhoods was only sig-

nificant with a one-tailed correction by subjects, F1(1, 99) = 2.91, p = .091, and

not at all by items, F2(1, 39) = 0.74, p = .394.

The neighbourhood size effect interacted with age, F1(1, 98) = 4.31, p =

.041, F2(1, 39) = 5.69, p = .022, with less facilitation for older participants,
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new data SB97 DRC CDP+ DRC-FC

Effects
New stimulus sets

Frequency ✔ ✔ ✔ ✔ ✔

Neighbourhood size s 0 -SI -S S
Word Length ✔ ✔ ✔ ✔ ✔

Nonword Length ✔ NW ✔ ✔ ✔

Lexicality ✔ NW ✔ ✔ ✔

Length × Lexicality ✔ NW ✔ ✔ ✔

Jared (2002) stimuli
Exception (E>F) ✔ ✔ ✔ S ✔

Exception (F>E) Si ✔ ✔ S ✔

Inconsistent (E>F) ✔ 0 S S 0
Inconsistent (F>E) -S 0 -S S 0

Rastle & Coltheart (1999) stimuli
Exception Pos. 1 ✔ ✔ ✔ ✔ ✔

Exception Pos. 2 ✔ ✔ ✔ 0 ✔

Exception Pos. 3 0 0 ✔ -Si Si
Position × Regularity ✔ ✔ ✔ ✔ ✔

Correlations Dir.
Exception ∼ Pos. Irr. +ve ✔ ID ✔ ✔ ✔

Frequency ∼ Neigh. +ve ✔ ID ✘ 0 ✔

Lexicality ∼ Neigh. -ve ✔ ID 0 0 0
Lexicality ∼ Word Len. +ve ✔ ID ✔ ✔ ✔

Lexicality ∼ Exc. (J.) +ve ✔ ID 0 ✘ ✔

Frequency ∼ Nonword Len. +ve ✔ ID ✔ ✘ ✔

Table 5: Patterns of significance for effects and correlations of interest. ✔ indicates an effect was
significant on a two-tailed test (p < .05) in the expected direction or a correlation was significant in
the indicated direction (Dir.); where both by-subjects and by-items analyses were used, ✔ means
significant in both analyses. A negative (-) sign indicates an effect was in the unexpected direction.
S and I mean significant by-subjects and by-items, respectively. s and i mean .05 < p < .1 in
by-subject and by-item analyses, respectively (or equivalently p < .05 one-tailed). +ve = positive.
-ve = negative. 0 indicates an effect or correlation was not significant. ✘ indicates a correlation
was significant in the opposite direction to that indicated. SB97 = Spieler and Balota (1997). NW
= effect not estimated due to absence of nonwords in experiment. ID = effect not estimated due to
non-publication of individual trial data.
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consistent with the finding of Spieler & Balota (2000).

Length and lexicality. Nonwords are typically read aloud more slowly than

words, and longer stimuli are typically read more slowly than shorter stimuli;

for monosyllabic stimuli it has been argued the effect is only present for

nonwords (Weekes, 1997), but analyses of mega-studies with monosyllabic

words do find a small effect (e.g., Adelman & Brown, 2007, 2008a; Balota et al.,

2004).

Words. The effect of length such that longer words were read more slowly

was significant by subjects, F1(2, 198) = 13.04, and by items F2(2, 60) = 6.64,

p = .002.

Partialing the confounded variable of orthographic neighbourhood size

from item analyses gave adjusted mean RTs of 542, 551 and 549 ms for three,

four, and five letter words, respectively. After the (facilitatory) effect of

orthographic neighbourhood size, F2(1, 59) = 5.97, p = .018, was partialled

as a preceding step, the effect of length remained significant F2(2, 59) = 3.61,

p = .033. Orthographic neighbourhood size was not, however, significant,

F2(1, 59) = 0.10, when added as the last step.

In the uncovaried analyses, the linear trend was strong, F1(1, 198) = 19.35,

F2(1, 60) = 9.06, p = .004, but augmented by the quadratic trend, F1(1, 198) =

6.72 p = .010, F2(1, 60) = 4.21 p = .045. The covaried analysis had a weaker

linear trend F2(1, 59) = 3.05, p = .086, with a quadratic trend in evidence,

F2(1, 59) = 4.16, p = .045.

Overall, the length effect for words was in the expected direction and non-

linear.

Nonwords. The effect of nonword length was significant by subjects,

F1(2, 198) = 130.99, and by items F2(2, 60) = 15.10.

Partialing the confounded variable of orthographic neighbourhood size

from item analyses gave adjusted mean RTs of 590, 610 and 629 ms for three,

four, and five letter words, respectively. After the (facilitatory) effect of

orthographic neighbourhood size, F2(1, 59) = 15.59, was partialled, the effect
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of length remained significant F2(2, 59) = 7.68, p = .001. Orthographic neigh-

bourhood size did not, however, explain unique variance, F2(1, 59) = 1.50,

p = .226, when added as the last step.

The effect was wholly due to the linear trend: F1(1, 198) = 261.88,

F2(1, 60) = 30.19, covaried F2(1, 59) = 16.59, with no role for the quadratic

trend: F1(1, 198) = 0.10, F2(1, 60) < 0.01, covaried F2(1, 59) = 0.01.

There was a clear, linear, effect of length for the nonwords.

Lexicality. The words were read more quickly (548 ms on average) than the

nonwords (611 ms on average), F1(1, 495) = 966.57, F2(1, 150) = 236.23; and

the interaction with length was significant F1(2, 495) = 29.31, F2(2, 150) = 7.30.

The lexicality effect was replicated, as was its interaction with length.

Regularity and Consistency. Words whose mapping from spelling-to-sound is

unusual are read more slowly than those whose mapping is typical or com-

mon (e.g. Glushko, 1979; Seidenberg et al., 1984). Such an effect is indexed in

terms of following rules (regular words) or not following rules (exception or

irregular words), namely regularity, or in terms of a graded construct involv-

ing the number of matching exemplars (friends) and mismatching exemplars

(enemies), namely consistency; both regularity and consistency appear to have

independent effects, though the relative frequencies of friends and enemies is

important for both, with the cost being reliant on the enemies being higher

frequency (Jared, 2002).

Regularity. For Jared’s (2002) stimuli, the exception words whose enemies

were higher frequency than their friends were read more slowly than their

matched control words, F1(1, 99) = 56.37, F2(1, 19) = 10.92, p = .004, as were

the exception words whose enemies were lower frequency then their friends,

though the by-items analysis was only significant one-tailed, F1(1, 99) = 43.78,

F2(1, 19) = 3.43, p = .080 (unadjusted for direction).

The regularity effect was therefore replicated, though the effect was less

dependent on the frequencies of friends and enemies than in previous studies.

Consistency. For Jared’s (2002) stimuli, the regular-inconsistent words
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whose enemies were higher frequency than their friends were read more

slowly than their matched control words, F1(1, 99) = 79.37, F2(1, 19) = 11.97,

p = .003. The opposite was true for the regular-inconsistent words whose

friends were higher frequencies than their enemies: Responses to these words

were faster than to their matched controls, though only signficantly so in the

by-subjects analysis, F1(1, 99) = 5.70, p = .019, F2(1, 19) = 0.91.

This pattern of a strong consistency effect only for those words whose en-

emies were higher frequency than their friends replicated the previously ob-

served data.

Position of irregularity. The latency cost for exception words is greater for those

whose irregularities are toward the beginning of the word (Coltheart & Rastle,

1994; Rastle & Coltheart, 1999), the effect being strong for position 1 irregular-

ities, moderate for position 2 irregularities and for position 3 absent in smaller

studies (Rastle & Coltheart, 1999; Roberts, Rastle, Coltheart & Besner, 2003), or

present but weak in mega-study analyses (Adelman & Brown, 2007).

Words with an irregular grapheme-phoneme correspondence in the first

letter produced longer RTs than their matched controls, F1(1, 99) = 437.80,

F2(1, 19) = 18.89. Words whose irregularity was in the second letter also

showed an exception cost relative to their controls, F1(1, 99) = 75.35,

F2(1, 38) = 9.55, p = .004. No such effect was observed for the third position

irregulars whose RTs were equivalent to their controls’, both F < 0.5.

The interaction between position and regularity was significant,

F1(2, 495) = 256.73, F2(2, 85) = 15.41.

This replicated the pattern typically found in standard-sized studies of the

position of irregularity effect.

2.2.2. Effects by Session

Given the use of multiple sessions, we examined the effect of session. Over-

all, responses were faster in session 1 (544 ms) than session 2 (556 ms) than

session 3 (562 ms), F1(2, 198) = 10.06, F2(2, 1368) = 409.01.
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Frequency. The effect of frequency replicated in every session: session 1, with

RTs of 535, 539, 529, 521 and 518 ms, F1(4, 396) = 19.33, F2(4, 80) = 8.87;

session 2, with RTs of 554, 552, 541, 539 and 532 ms, F1(4, 396) = 11.56,

F2(4, 80) = 6.69; session 3, with RTs of 563, 561, 546, 550 and 545 ms,

F1(4, 396) = 10.39, F2(4, 80) = 6.27. Moreover, the effect did not interact with

session F1(8, 1188) = 1.31, p = .236, F2(8, 160) = 0.97.

Neighbourhood size. The weak neighbourhood effect was not significant in any

individual session (session 1: 532 vs. 529 ms.; session 2: 549 ms vs. 547 ms;

session 3: 554 vs. 550 ms). It also did not interact with session, both F < 0.5.

Word Length. The effect of word length was present in each session, though

it was not significant by items in the second session: session 1, RTs of 527,

525 and 536 ms (for 3, 4 and 5 letter words, respectively), F1(2, 198) = 7.53,

F2(2, 60) = 6.55, p = .003; session 2, RTs of 545, 549 and 552 ms, F1(2, 198) =

4.00, p = .020, F2(2, 60) = 1.93, p = .153; session 3, RTs of 551, 560 and 558 ms,

F1(2, 198) = 4.98, p = .008, F2(2, 60) = 3.72, p = .030. There was no interaction

with session, both F < 0.6.

Nonword Length. The effect of nonword length was present in all sessions: ses-

sion 1, with RTs of 577, 602 and 623 ms, F1(2, 198) = 84.18, F2(2, 60) = 12.88;

session 2, with RTs of 583, 600 and 622 ms, F1(2, 198) = 70.21, F2(2, 60) = 14.86;

session 3, with RTs of 592, 608 and 618 ms, F1(2, 198) = 38.91, F2(2, 60) = 8.56.

This effect did interact by session, F1(4, 396) = 6.28, F2(4, 120) = 4.77, p < .001,

because the longer nonwords were immune to the overall slowing by session.

Lexicality. The effect of lexicality and its interaction with length were repeated

in every session: session 1 (534 and 606 ms), F1(1, 495) = 859.95, F2(1, 150) =

236.96 for lexicality and, F1(2, 495) = 23.79, F2(2, 150) = 6.56, p = .002 for

the interaction; session 2 (551 and 608 ms), F1(1, 495) = 569.01, F2(1, 150) =

192.30 for lexicality and, F1(2, 495) = 21.64, F2(2, 150) = 6.99, p = .001 for the

interaction; and session 3 (558 and 610 ms), F1(1, 495) = 507.74, F2(1, 150) =
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181.95 for lexicality and, F1(2, 495) = 7.87, F2(2, 150) = 3.36, p = .037 for the

interaction.

The lexicality effect clearly interacted with session, F1(2, 198) = 32.29,

F2(2, 120) = 7.86. The lexicality by length by session interaction was only

significant by subjects, F1(4, 396) = 3.25, p = .012, F2(4, 240) = 2.18, p = .072.

Again, both these effects were driven by the immunity of the longer nonwords

to the slowing showed by other conditions.

Regularity and Consistency. Regularity. The cost for the high-frequency enemies

exception words was consistent across sessions: session 1 (545 and 529 ms),

F1(1, 99) = 26.99, F2(1, 19) = 10.12, p = .005; session 2 (560 and 545 ms),

F1(1, 99) = 19.10, F2(1, 19) = 8.34, p = .009; session 3 (568 and 552 ms),

F1(1, 99) = 15.88, F2(1, 19) = 10.10, p = .005. This effect did not interact

with session, both F < .2.

The cost for the lower-frequency enemies exception words was less consis-

tent over sessions: session 1, (536 and 520 ms), F1(1, 99) = 30.02, F2(1, 19) =

6.22, p = .022; session 2, (548 and 536 ms), F1(1, 99) = 11.88, F2(1, 19) = 3.11,

p = .094; session 3, (552 and 542 ms), F1(1, 99) = 7.75, F2(1, 19) = 0.86,

p = .365. This effect did not, however, interact with session, both F < .8.

Consistency. The regular-inconsistent words whose enemies were higher

frequency than their friends were read more slowly than their matched con-

trol words across all sessions: session 1 (548 and 533 ms), F1(1, 99) = 26.32,

F2(1, 19) = 4.95, p = .038; session 2 (560 and 528 ms), F1(1, 99) = 17.40,

F2(1, 19) = 8.67, p = .008; session 3 (570 and 540 ms), F1(1, 99) = 25.58,

F2(1, 19) = 14.66, p = .001. There was no interaction with session, both F < .2.

Those whose friends were higher frequency than their enemies did

not show this difference in a consistent manner: session 1 (514 and 521

ms), F1(1, 99) = 5.15, p = .025, F2(1, 19) = 2.17, p = .157; session 2 (530

and 528 ms), both F < 0.09; session 3 (534 and 540 ms), F1(1, 99) = 3.95,

p = .050, F2(1, 19) = 0.92. The interaction with session was not significant,

F1(2, 198) = 1.93, p = .197, F2(2, 38) = 1.74, p = .189.
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Position of irregularity. The first position exception cost was present in all ses-

sions: session 1 (608 and 535 ms), F1(1, 99) = 238.47, F2(1, 19) = 18.43; session

2 (610 and 544 ms), F1(1, 99) = 259.47, F2(1, 19) = 19.17; session 3 (611 and

551 ms), F1(1, 99) = 202.90, F2(1, 19) = 18.68. An interaction with session was

significant by items (and nearly so by subjects), F1(2, 198) = 3.01, p = .052,

F(2, 30) = 4.05, p = .025, driven by the immunity of the exception words to

the slowing shown by other conditions.

The second position exception effect was consistent over sessions: session

1 (547 and 535 ms), F1(1, 99) = 25.16, F2(1, 38) = 7.12, p = .011; session 2 (561

and 548 ms), F1(1, 99) = 35.50, F2(1, 38) = 8.33, p = .006; session 3 (566 and

554 ms), F1(1, 99) = 17.91, F2(1, 38) = 7.41, p = .010, with no interaction, both

F < .4.

A third position exception effect was absent in all sessions: session 1 (540

and 542 ms), session 2 (552 and 549 ms), and session 3 (557 and 559 ms), all

F < 1.05, and this did not interact with session, both F < 1.3.

A position by irregularity interaction was present in each session: session

1, F1(2, 495) = 138.67, F2(2, 85) = 15.45; session 2, F1(2, 495) = 118.06,

F2(2, 85) = 14.83; and session 3, F1(2, 495) = 98.60, F2(2, 85) = 15.48.

The position by irregularity by session interaction was not significant,

F1(4, 396) = 1.301, p = .269, F2(4, 170), p = .070.

Summary of session effects. Overall, participants became slower over sessions.

This might reflect motivation (these three half-hour sessions were embedded

within three of nine one-hour sessions of the larger experiment), or a strategic

change with experience. If the motivation explanation is correct, the lack of

slowing for the slowest conditions (4-letter nonwords, 5-letter nonwords, first

position exceptions) might be an artifact of more trials falling foul of the 1500

ms response recording cutoff. A strategic explanation would involve a shift of

the response criterion (cf. Taylor & Lupker, 2001).
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2.2.3. Comparison with previous mega-study data

To further establish that our findings were not unusual, we also extracted

the mean RTs for these words from Spieler & Balota’s (1997) undergraduate

word naming data set. Of the 592 unique words in our data set, 534 were in

the Spieler and Balota experiment. We examined our major effects of interest

in terms of the condition means, presented in Table 4, and by-items analyses

like those we used on our data.

More frequent words were read more quickly than less frequent words,

F2(4, 80) = 5.71, as in our data set. No significant effect of neighbourhood size

was found, F2(1, 39) = 0.01, as in our data set. Longer words were read more

slowly than shorter words, F2(2, 60) = 10.93, as in our data set. From Jared

et al.’s (1990) stimuli, exception words were read more slowly than their reg-

ular controls if they had enemies more frequent than their friends, F2(1, 16) =

11.82, p = .003, as in our data. This was also the case when the friends were

more frequent, F2(1, 19) = 5.76, p = .027; this effect was only significant in

our data if a one-tailed correction was applied. Inconsistent words tended to

be read more slowly than their consistent controls when their enemies were

more freqeunt than their friends, but this was not significant, F2(1, 16) = 1.41,

p = .252. In our data, and in Jared’s original study, the effect in this di-

rection was however significant. No difference was found between consis-

tent and inconsistent stimuli when friends were of higher frequency than en-

emies, F2(1, 18) = 0.00, as in our data. From Rastle & Coltheart’s (1999) stim-

uli, exception words were read more slowly than controls when the irregular-

ity was in first position, F2(1, 7) = 14.87, p = .006, and in second position,

F2(1, 20) = 4.68, p = .043, but no such effect was significant for third position,

F2(1, 16) = 1.35, p = .263. These were all the same as in our data, as was the

presence of the interaction between position and irregularity (such that earlier

irregularities produce more slowing), F2(2, 43) = 5.32, p = .009.

In summary, of these 11 tests on Spieler & Balota’s (1997) data, 7 showed the

same signficant effects as in our data and 2 showed the same non-significant
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effects as our data (though one was marginal by-subjects in our data). One

further test was significant where this was significant by-subjects but only

marginal by-items in our data, and the last was significant in our data, where

the effect was only numerically in the same direction in Spieler and Balota’s

data. Overall, our data were not unusual.

2.2.4. Raw effect estimation and reliability

Our purpose in collecting these data was to examine individual differences

in these effects, so it was necessary to summarise each effect for each partici-

pant as a single number. A description of how we did so, and the reliability of

the effects follows.

The reliability of our session-average estimates was calculated on the ba-

sis of the average test-retest reliability and the Spearman-Brown formula. This

reliability is used to adjust estimated variance of the effect because the esti-

mated effects will show variability that is greater than that of the underlying

effects; indeed, the presence of measurement error or noise implies variability

will appear even on measures for which participants are identical. Significance

levels are omitted in this section: Observed correlations for 100 participants are

significant at the 5% level if their absolute values are at least .197.

Frequency. The frequency effect was estimated by applying the linear contrast

to participants’ band means, reversing coding so that the expected effect was

positive (positive effects if rare words were read slower than common words).

Cross-session correlations were (1 and 2) .101, (1 and 3) .388, and (2 and 3) -

.046. The mean correlation of .148 yields an estimate for the reliability of the

average of .342.

In light of the negative correlation of second and third sessions, we exam-

ined methods that might improve the reliability. Using individual item fre-

quencies was counterproductive (.120, .314, and -.119). Solutions involving dif-

ferent contrasts did improve reliability but did not improve correlations with

other effects. We did not explore solutions that involved the full range of stim-

uli as these might artificially induce common variance with other effects.
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Neighbourhood size. The simple difference between the high neighbourhood

size and low neighbourhood size stimuli was used as the neighbourhood ef-

fect estimate. Cross-session correlations were (1 and 2) .064, (1 and 3) .102, and

(2 and 3) .072. The mean correlation of .080 implied a reliability for the average

of .206; given the weak effect, this is not surprising.

Length. The length effects were estimated as the linear contrast. Cross-session

correlations for the word length effect were (1 and 2) .334, (1 and 3) .192, and

(2 and 3) .216. The mean correlation of .247 implies a reliability for the average

of .497. Cross-session correlations for the nonword length effect were (1 and 2)

.424, (1 and 3) .270, and (2 and 3) .313. The mean correlation of .336 implies a

reliability for the average of .603.

Lexicality. The lexicality effect was calculated as the difference between word

and nonword responses for four-letter stimuli, to avoid structural correlations

with the length effects (the four-letter condition has no weight in the calcu-

lation of the linear contrast for length). The cross-session correlations were (1

and 2) .613, (1 and 3) .632, and (2 and 3) .345; the mean of these is .530, implying

a reliability for the average of .772.

Regularity (Jared). The exception cost was calculated from the Jared (2002)

stimuli as the difference of the mean of both exception conditions from their

matched controls, and from the Rastle and Coltheart (1999) stimuli as the

difference of the mean of the first and second position exceptions and their

matched controls. The cross-session correlations for the Jared measure were (1

and 2) -.014, (1 and 3) .138, and (2 and 3) .206, whose mean correlation of .110

implies a reliability for the average of .270. The cross-session correlations for

the Rastle and Coltheart measure were (1 and 2) .309, (1 and 3) .332, and (2 and

3) .256, whose mean correlation of .299 implies a reliability for the average of

.561.

Consistency. The consistency effect was calculated as the difference of the in-

consistent stimuli with high-frequency enemies and their matched controls,
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because only the advantage for consistent words was present in the data. The

cross-section correlations were (1 and 2) .113, (1 and 3) -.079, and (2 and 3) .012,

whose mean of .016 implies a poor reliability for the average of .047.

Regularity (Rastle & Coltheart). The cross-session correlations for the measure

of the regularity effect based on the Rastle and Coltheart stimuli were (1 and 2)

.309, (1 and 3) .332, and (2 and 3) .256, whose mean correlation of .299 implies

a reliability for the average of .561.

Position of irregularity. The position of irregularity effect was calculated as the

double difference (interaction) subtracting the position 2 regularity effect (posi-

tion 2 exceptions minus matched controls) from the position 1 regularity effect

(position 1 exceptions minus matched controls). The cross-session correlations

were (1 and 2) .264, (1 and 3) .338, and (2 and 3) .165, whose mean of .256

implies that the average has a reliability of .508.

2.2.5. Effect distributions

Of immediate concern for the study of individual differences is whether

participants do in fact differ on the variables of interest. Figure 1 illustrates

(crosses and solid lines) the distribution of the effect estimates calculated as de-

scribed above. These distributions are, however, somewhat misleading as they

include both true differences between participants and differences that arise

from trial-to-trial variation (noise); indeed these plots would show variability

even if participants were identical. We therefore estimated the (true-score) vari-

ance by multiplying the observed variance of an effect by our estimate of that

effect’s reliability (as indicated by classical test theory); these are illustrated in

Figure 1 (dashed lines) by normal distributions with this estimate of the vari-

ance.

We also performed analyses based on the ANOVA Subject × Effect inter-

action to establish that effects varied across subjects; the statistics are super-

imposed on the corresponding panels of Figure 1. Significant variation was

found for all but two of the effects; the interaction involving neighbourhood
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size approached significance, whereas consistency showed no such evidence

of reliability.

Variability in the neighbourhood size effect in naming is, however, evi-

denced from other more sensitive data (four participants reading 2820 words

50 times each: Adelman et al., 2013, indeed, these participants show inhibitory

or null effects). Moreover, as the next section shows, both consistency and

neighbourhood size participate in significant correlations, which should not be

the case if there were no participant-based variability.

2.2.6. Effect correlations

We calculated the correlations between the effects as calculated above; for

ease of interpretation, the frequency effect was reverse coded, so that a greater

benefit from frequency was indicated by a larger number; these are presented

in Table 6 (above the diagonal), as are correlations adjusted for attenuation

using the test-retest reliabilities (below the diagonal). The high incidence of

estimates of a perfect correlation for the consistency variable could indicate

that the reliability estimate is an underestimate, or that the population corre-

lation coefficient is undefined because there is no true variability. The perfect

correlation estimated between the two measures estimated from Rastle & Colt-

heart’s (1999) stimuli (exception and position of irregularity) is suggestive that

there is more variability in some of the conditions than others: For instance,

the position 1 exception effect may carry most of the variability in both effects.

The overall high incidence of significant correlations is suggestive of a general

speed influence that could be readily modelled by modifying the coefficient

linking model cycles to RTs, rather than being indicative of the qualities of dif-

fering processes, as we go on to discuss.

Adjusting for general speed. A core difficulty in assessing individual differences

in response time effects in terms of correlations is that a correlation will be in-

duced if there is a general speed coefficient that is a multiplier on the central

processes; in many models this is the slope for converting cycles into response
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Figure 1: Distributions of effects: Crosses (×) indicate observed effect estimates, calculated as
described in the text. Solid lines are Gaussian kernel density estimates of the distribution of effect
estimates. Dashed lines are normal distributions estimating the distribution of the true effects, that
is, with standard deviation adjusted for reliability. The reported F-statistic is for the Subject ×
Effect interaction (tested with the Subject × Effect × Session term as the MSE), indicating whether
there is evidence for individual differences in the effects. Frequency is reverse-coded (relative
to the regression coefficient) so that positive values indicate rare words were read slower than
common words. R&C = Rastle and Coltheart.
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1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — .223 .211 .471 .378 .227 .226 .252 .271
2. Neighbourhood Size .840 — -.046 .158 -.105 .104 .068 .047 .083
3. Word Length .512 -.143 — .398 .452 .141 .078 -.002 .115
4. Nonword Length 1.000 .448 .727 — .585 .287 .283 .331 .233
5. Lexicality .736 -.263 .729 .858 — .303 .280 .309 .329
6. Exception (Jared) .747 .441 .386 .712 .663 — .356 .268 .206
7. Consistency 1.000 .691 .512 1.000 1.000 1.000 — .332 .125
8. Exception (R&C) .575 .138 -.005 .568 .470 .689 1.000 — .613
9. Pos. of Irregularity .650 .099 .228 .421 .526 .557 .809 1.000 —

Table 6: Correlations between raw estimated effects, above diagonal; the frequency effect has been
reverse-coded (sign-flipped) so that a greater benefit from higher frequency is indicated by a larger
number. Correlations significant at α = .05 (|r| ≥ .197) are indicated in bold. The same values
adjusted for attenuation using test-retest reliability are presented below the diagonal; these are not
appropriate for significance testing against zero. R&C = Rastle and Coltheart.

times. Whilst in modelling applications, this parameter can simply be included

for every participant, for a more qualitative understanding of correlations, re-

moving such an effect is desirable. To do this when we assume (as in the mod-

els we use here) that the noise is independent from the central processes of

interest requires a method that adjusts for central process variance with noise

removed, rather than all the variance (as in z-scoring); our method for such

adjustment is detailed in Appendix D.

Once these adjustments were made, we estimated reliabilities for the ad-

justed effect magnitudes using the correlations between sessions, in the same

manner as for the unadjusted effect magnitudes (§2.2.4). The reliabilities were:

frequency .114; neighbourhood size .197; word length .171; nonword length

.408; lexicality .570; exception (Jared) .399; exception (Rastle & Coltheart) .238;

consistency .0007; and position of irregularity .395.

Correlations among the effects adjusted for general speed using these vari-

ance components, and the disattenuated versions of the correlations are pre-

sented in Table 7. The apparently structural correlation between position of

7In fact, all three between-session correlations were negative, but a negative reliability is mean-
ingless.
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1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — .313 .072 .211 .082 -.015 .123 .029 .093
2. Neighbourhood Size 1.000 — -.031 .024 -.236 -.195 .069 .115 .090
3. Word Length .515 -.169 — .140 .262 -.072 .102 -.106 .055
4. Nonword Length .978 .085 .529 — .174 .153 -.004 -.028 -.106
5. Lexicality .322 -.704 .839 .360 — .226 .139 -.170 .054
6. Exception (Jared) -.070 -.696 -.276 .380 .474 — .179 -.182 -.043
7. Consistency — — — — — — — .030 -.074
8. Exception (R&C) .176 .531 -.524 -.089 -.461 -.590 — — .505
9. Pos. of Irregularity .438 .323 .213 -.265 .115 -.109 — 1.000 —

Table 7: Correlations between general-speed-adjusted estimated effects, above diagonal; the fre-
quency effect has been reverse-coded (sign-flipped) so that a greater benefit from higher frequency
is indicated by a larger number. Correlations significant at α = .05 (|r| ≥ .197) are indicated in
bold. The same values adjusted for attenuation using test-retest reliability are presented below
the diagonal; these are not appropriate for significance testing against zero; consistency had no
test-retest reliability. R&C = Rastle and Coltheart.

irregularity and the related exception measure remained, along with five other

significant correlations. Frequency was positively related with neighbourhood

size and nonword length. As well as the positive correlation with frequency,

neighbourhood size correlated negatively with lexicality. In addition to this

negative correlation with neighbourhood size, lexicality correlated positively

with word length and exception effect by the Jared measure. These relation-

ships are illustrated in Figure 2.

Five other correlations approached significance: negative correlations of the

Jared exception measure with neighbourhood size, consistency, and the Rastle

& Coltheart measure of the exception effect; and lexicality’s positive correlation

with the nonword length effect and lexicality’s negative correlation with the

Rastle & Coltheart exception effect.

2.3. Discussion

2.3.1. Replication of standard effects

Our data largely replicated the major effects of interest, with the exception

of neighbourhood size.

Frequency had its usual effect such that rare words required more process-
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Figure 2: Scatterplots illustrating the significant individual differences correlations between
general-speed adjusted effects.
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ing time. The neighbourhood size effect was not significant. We suspect this

is because there is a mixture of readers showing facilitatory and inhibitory ef-

fects, and our sample has a greater proportion of readers showing inhibitory

neighbourhood size effects than the typical experiment showing the facilitatory

effect. This seems likely because our sample was older than that in a typical

experiment (with introductory psychology students), and the facilitatory effect

is associated with younger participants (Spieler & Balota, 2000). Longer stim-

uli were read more slowly than shorter stimuli, with the effect being stronger

for nonwords than real words. Consistent words were read more quickly than

inconsistent words, only if their friends were more frequent than their ene-

mies, as found by Jared et al. (1990). Exception words were read more slowly

than regular words. The dependence of this on the position of the irregularity

— greater effects for irregularities to the left (beginning) of the word — was

replicated, but the evidence for a dependence on consistency was not.

2.3.2. Effects by session

For the most part, participants responded slower in later sessions, but the

slowest response categories were immune to this effect. This could be artifac-

tual, or relate to a change in response criterion (cf. Taylor & Lupker, 2001).

2.3.3. Comparison with mega-study data

There was great consistency between our data and the same stimuli in

Spieler & Balota’s (1997) data. The consistency effect did not reach significance

in Spieler and Balota’s data, but the effect was in the same direction in both

data sets, and such effects are significant in their data in regression analyses

over a larger set of items (Adelman & Brown, 2008a). The only other minor

inconsistency was one test of the exception effect in our data required a one-

tailed correction to reach significance, where such as correction was not needed

in Spieler and Balota’s data. Overall, this confirmed the typicality of our data.
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2.3.4. Reliability and variability

There was clear evidence for reliability of seven of the nine measures

as measures of individual traits, marginal evidence for such reliability of

neighbourhood size effects, and no such evidence for consistency effects. This

type of statistical evidence is ambiguous between very high actual session-

to-session variability or very small (or absent) individual differences. Large

relative session-to-session variability may partially result from relatively few

items contributing to the effect estimate.

That the neighborhood size effect was correlated with other effects in this

experiment, and can be predicted from age and external written language vari-

ables in this task (Adelman, Sabatos-DeVito & Marquis, in prep.) and lexical

decision (e.g., Sears et al., 2008) suggest that individual differences are not ab-

sent, but the weak effects are largely outweighed by trial-to-trial noise.

Given the size and significance of the consistency effect, it is surprising that

those who show the strongest such effects in one session, are not those showing

the strongest effects in the next. We suggest that this is due to large priming

effects that differ with different randomizations of the stimulus ordering that

outweigh the individual differences. When word bodies are repeated within an

experiment, the pronunciation at the first presentation can facilitate a consis-

tent future presentation or inhibit an inconsistent one (Seidenberg et al., 1984).

As such, the consistency effect may itself — in whole or in part — result from

the probability that the most recent preceding occurrences of the word body

in question (which need not be within the experiment itself) having been in

a rime friend that primes the relevant pronunciation. Where such variation

is intrinsic to the causation of the effect, lower estimated reliability should be

expected than if an effect is caused by a fixed property of the underlying mech-

anism, because susceptibility to the effect interacts with the helpfulness of the

stimulus ordering.

Moreover, to the extent that orthographic neighbours are more (or only)

facilitatory when they are also phonological neighbours (Adelman & Brown,
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2007; Peereman & Content, 1997), a similar consistency-based mechanism

might be proposed for neighbourhood size effects. If the effect of frequency is

linked to contexts rather than occurrences per se (Adelman et al., 2006), then

a similar argument may be made for these contextual diversity effects: More

contextually diverse words are more likely to have an appropriate context

instantiated by a recently presented word than are contextually restricted

words.

Overall, whilst it is clear that there are reliable individual differences, it

also appears that within-individual variation may be very important for un-

derstanding effects in which priming might have a causal role.

2.3.5. Correlations among effects

Turning to the central aim of the experiment, raw correlations were pos-

itive among nearly all pairs of effect measures, indicative of overall general

speed differences. The interpretation of these general speed differences may

be difficult if there are genuinely two processes — lexical and nonlexical —

of imperfectly correlated varying speeds. Correlations on measures adjusted

for general speed (Table 7) revealed six significant relationships, and five that

approached significance, which will be discussed in turn.

We consider the effects largely in terms of principles of recent versions of

dual-route theory (Coltheart, 2012, or more concretely, Coltheart et al., 2001;

Perry et al., 2007, for examples); we are not aware of previous examples of

their use to explain these types of correlations. These principles are that: lex-

ical access speed depends on frequency; nonlexical processing has a left-to-

right component; for words, lexical and nonlexical processes can co-operate

and compete to produce pronunciations, and co-operation produces faster re-

sponses than competition; words are read quicker than nonwords because the

lexical route produces pronunciations rapidly.

Significant correlations.

Exception (Rastle & Coltheart) and Position of Irregularity.
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As described above, the positive correlation between the exception effect

from the Rastle & Coltheart stimuli and the position of irregularity effect (from

the same stimuli) is explained by the position one exception effect for the same

items contributing most of the variance to both these measures.

Frequency and Neighbourhood Size. Both frequency and neighbourhood size

effects have been taken to be an indication of the quality of lexical representa-

tions (e.g., Sears et al., 2008). Moreover, neighbourhood effects can be produced

by the lexical route of the DRC (Adelman & Brown, 2008a; Reynolds & Besner,

2002). In a lexical quality interpretation, participants who show these effects

strongly have representations that are weak and therefore slow to be activated,

and poorly differentiated from other representations (which in naming are co-

incidentally helpful, cf. Adelman & Brown, 2007; Peereman & Content, 1997).

Their positive relationship can readily be explained by such a concept, possibly

linked to letter-word connections in models, and hence lexical route strength

or speed (linking into general speed). Any nonlexical contribution to neigh-

bourhood size effects (Perry et al., 2007) would not directly give a positive link

with the lexical frequency effect, though an indirect influence (i.e., cross-talk)

could involve both routes.

Lexicality and Neighbourhood Size. The lexicality effect is an indication of the

extent to which words are read more quickly than nonwords, which in a dual-

route framework largely reflects the extent to which the lexical route operates

more quickly than the nonlexical route (e.g., Coltheart et al., 1993). That is,

strong lexicality effects reflect a fast lexical route, whereas strong neighbour-

hood effects reflect, according to the argument above, a slow (poorly specified)

lexical route; this would explain the negative relationship.

Lexicality and Word Length. Length effects are often thought of as due to

a left-to-right process in the nonlexical route (Coltheart & Rastle, 1994). The

slower such a process operates, the greater difference will occur between

shorter and longer words, at least insofar as the nonlexical route is a limiting

factor. In the present account, a larger lexicality effect also should indicate a

relatively inefficient nonlexical route, so the positive relationship might follow,
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so long as it is not so slow as to have no effect. Alternatively, word length

effects may have both a lexical and nonlexical locus.

Lexicality and Exception (Jared). By the same token, a large lexicality effect

suggests that the lexical route is operating quickly and the nonlexical route is

operating slowly, so little variation can be contributed by the lexical route, as

everything is fast. This also means effects in the nonlexical route would be

large because its processing is protracted, and large when adjusted for general

speed, because the nonlexical route is contributing most of the variance. The

exception effect is one of these effects produced from nonlexical contributions,

so should be large in this scenario where the lexicality effect is large, thus pro-

ducing the positive correlation.

Frequency and Nonword Length. Finally, the positive relationship between

frequency and nonword length is harder to explain, because they appear to re-

flect relatively pure lexical and nonlexical processes respectively, and so should

be separately linked to these separate speeds. If a positive link between these

two speeds were the source, though, it should have been extracted in the gen-

eral speed correction. That it remains after this correction required explanation.

One possible explanation is that the strong frequency effect occurs when there

is more generalised activation (and more competition) in the lexical route (due

to the poor differentiation of representations); as such, the lexical route inter-

feres with, and slows, output from the nonlexical route, and disproportionately

more so for (more slowly read) longer nonwords. An alternative explanation,

that is less consistent with the traditional dual route conception, is that when

the lexical route is operating rapidly, it is sometimes able to contribute a lexical

analogy pronunciation before the slower, length-sensitive nonlexical route can

generate a response, reducing the influence of the nonlexical route.

Marginal correlations.

Lexicality and Nonword Length. Likewise, a large lexicality effect indicates an

efficient lexical route, so that once general speed is accounted for, most varia-

tion is due to the nonlexical route, where the nonword length effect is gener-
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ated.

Neighbourhood Size and Exception (Jared). When the neighbourhood size ef-

fect is large, this implies that the lexical route is not only slow, but also im-

portant in determining RTs for words; as such, factors that reflect nonlexical

influence, including costs from exceptions, should be relatively less important

(once general speed is adjusted for), generating the observed negative correla-

tion.

Exception (Jared) and Exception (Rastle & Coltheart). These

nominally similar effects correlate negatively, perhaps because the Rastle

and Coltheart measure is dominated by the cost for irregularities in the initial

position — mostly involving consonants — and the Jared measure is based on

later irregularities — mostly involving vowels. Possibly these reflect different

influences of nonlexical pronunciation. Effects of early irregularities might re-

flect inhibitory processes, possibly at the lexical level, whilst the effect of later

irregularities might reflect a lack of facilitation for the correct pronunciation,

rather than inhibition per se.

Exception (Jared) and Consistency. These inconsistent and irregular stimuli

both mostly involve differences in the pronunciation of the vowel, so might be

subsumed under some similar form of nonlexical process.

Exception (Rastle & Coltheart) and Lexicality. According to the description

above, inhibition to lexical access is involved in the exception effect with the

Rastle & Coltheart stimuli. For such inhibition to be effective, the lexical pro-

cess cannot outpace the nonlexical process too severely, which would be asso-

ciated with a small lexicality effect; this would produce a negative correlation.

2.3.6. Verbal analyses vs. simulated models

However, it is unclear whether this pattern of correlations is necessarily to

be expected in a complete dual-route model. It is one thing to describe these

causes verbally, but it is another to show that they can all occur in the same

single system. Indeed, arguments could have been made for some of these

correlations in the opposite direction, such as a negative correlation between
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frequency and nonword length. Part of this is due to nonlinearity in the effect

of speed in a system with routes that can co-operate in parallel: a fast system

can have little effect on RTs because there is little range in its contribution, and

a slow system can have little effect on RTs because it is outpaced by a faster

system. Determining what can in fact occur in a dual-route system therefore

requires simulations of a dual-route model.

3. MODELLING: DUAL-ROUTE CASCADED MODEL

The most well-known implemented dual-route model is the dual-route cas-

caded model (DRC: Coltheart et al., 1993, 2001). Although published versions

of this model lack semantics and the ability to read polysyllabic words, it is

complete in the sense that both the lexical and nonlexical route are imple-

mented in some detail, and it is able to produce predictions for any monosyl-

labic stimulus, and can produce all the effects considered here (see regressions

performed by Adelman & Brown, 2008a). This model stands as a conjunctive

hypothesis about the processes by which people read aloud; that is, its au-

thors consider it a theory in the sense of a set of falsifiable statements about

the details of cognition, rather than only one possible implementation of some

broader principles. It combines a lexical route that is based on an extension

of the interactive-activation and competition model (McClelland & Rumelhart,

1981) with a set of spelling-sound rules that are applied in a temporally left-to-

right fashion.

In our simulations, we sought to examine whether the model’s description

of the structures and processes of reading aloud is sufficiently accurate to allow

simulation of these data. Does adjustment of numerical parameters allow the

model to capture the variation and correlations in our data? Or does the model

make assumptions about the mechanisms and parameters underlying the item

effects that are shown to be incorrect by our data?
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3.1. Method

3.1.1. Models

Version of the Model. Coltheart et al. (2001) described the DRC with explana-

tions for the motivation for its structure; we (Adelman & Brown, 2008a) re-

described it with some details that we used in our re-implementation to pro-

duce the behaviour of the program that Coltheart et al. made available but

which were not mentioned in their paper. For present purposes, one minor

change was made to the model in the way that the grapheme-phoneme con-

version (GPC) route is initiated, and the phonological lexicon frequencies were

changed to be the same as used by Perry et al. (2007) (which were provided

to them by Coltheart). In terms of the GPC route, in the earlier version of the

model, the cycle on which the GPC first converted the first letter was directly

specified by a GPC delay parameter (α: on the tth model cycle, the left-most

⌊1 + (t − α)/β⌋ letters are considered). The modification was to set a thresh-

old on letter activation to initiate GPC processing: That is the GPC delay was

not directly a parameter, instead the start of GPC processing (α) was set to be

the first cycle on which a letter in the left-most channel exceeded a threshold

parameter. This change has been adopted in unpublished modifications to the

DRC by Coltheart and colleagues (DRC 1.2.1, used to model findings by, e.g.,

Mousikou, Coltheart, Finkbeiner & Saunders, 2010), in response to criticisms

such as those of Blais & Besner (2007) relating to the response of the model to

degraded stimuli. The rate at which letters are identified in the model does not

vary substantially across words (only across stimulus qualities) so the effect of

the old parameter is mimicked by the new parameter.

Parameter Settings. Two-hundred-and-fifty thousand potential parameter sets

were each produced by independently randomly selecting each parameter

from a set of values based upon those found to be optimal for average data

by Adelman & Brown (2008a) and, for parameters also in the CDP+, the value

used by Perry et al. (2007). The values used are presented in Appendix E.
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3.1.2. Stimuli and Procedure

All but two stimuli from the experiment were used for simulation, the ex-

ceptions being DIRE, which is bisyllabic in most accents including the model’s,

and MOULD, as only MOLD is in the model’s vocabulary. All 250,000 parameter

sets were tested by sequentially presenting the stimuli to the model to obtain

responses and RTs in model cycles; a trial was ceased, counted as an error and

excluded from analysis if more than 300 cycles were required. Responses that

did not match the model’s stored pronunciation for words were also counted as

errors. If and when 60 stimuli had timed out or been erroneously pronounced

by the model with a given parameter set, that simulation was ceased, and the

parameter set rejected; 2,674 sets were retained.

3.1.3. Selection to Correspond to Participants

For each participant, a multiple regression was performed for each param-

eter set that had been simulated (and retained), with the response being the

participant’s mean RT for each word8, and the predictors being the model’s RT

in cycles and the initial phoneme of the model’s response. For each participant,

the parameter set whose regression produced the lowest mean-squared-error

(highest R2) was retained, and the regression’s predictions were treated as the

predictions of the DRC (i.e., the DRC was permitted to treat the effect of first

phoneme as explicable but outside the model’s scope). The mean R2 obtained

was 36.10%.

3.2. Results

3.2.1. Standard Effects

We first examined whether the DRC had produced the effects observed in

the data; the predicted means for each condition are in Table 4. The corre-

sponding ANOVAs follow, and are also summarized in Table 5.

8One might imagine performing a similar calculation on condition means or effects, but this
discards information, and results in fewer points to use for fitting than parameters to fit them.
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Frequency. Predicted RT decreased with increasing frequency, F1(4, 396) =

84.98, F2(4, 80) = 113.4.

Neighbourhood size. The model predicted an inhibitory effect of neighbourhood

size, F1(1, 99) = 6.76, p = .011, F2(1, 41) = 6.19, p = .017. However, it would

be unrealistic to expect a predicted effect of 1 ms to reach significance in the

data.

Length and lexicality. The model predicted longer RTs for longer words,

F1(2, 198) = 52.35, F2(2, 60) = 132.6, and the same pattern for nonwords,

F1(2, 198) = 106.2, F2(2, 60) = 152.2. The difference between words and

nonwords, such that nonwords were slower, was significant F1(1, 495) = 1056,

F2(1, 150) = 4995, as was the interaction such that the length effect for

nonwords was greater, F1(2, 495) = 13.61, F2(2, 150) = 53.88. The estimated

means after partialling out neighbourhood size were: 544, 549, and 552 ms for

words and 594, 605, and 621 ms for nonwords.

Regularity and Consistency.

Regularity. Jared’s (2002) exception stimuli with high frequency ene-

mies were predicted to have slower responses than their matched controls,

F1(1, 99) = 98.20, F2(1, 17) = 13.00, p = .002, as were those with high

frequency friends, F1(1, 99) = 67.75, F2(1, 19) = 19.20.

Consistency. The regular-inconsistent stimuli with high frequency enemies

were predicted to have slower responses than their matched controls, though

this was significant only by-subjects, F1(1, 99) = 46.15, F2(1, 19) = 0.58, p =

.456. The predicted 1 ms effect was, however, tiny compared to that in the data.1.1

The regular-inconsistent stimuli with high-frequency friends showed the op-

posite pattern, which was again only significant by-subjects, F1(1, 99) = 17.80,

F2(1, 19) = 0.04, as in the data.

Position of irregularity. Exception words whose irregularity was in the first

position were predicted to be read more slowly than their regular controls,

F1(1, 99) = 311.0, F2(1, 19) = 12.65, p = .002, as were the second position
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exceptions, F1(1, 99) = 51.89, F2(1, 38) = 22.44, and the third position excep-

tions, F1(1, 99) = 23.85, F2(1, 28) = 7.01, p = .013. The regularity by position

interaction was significant, F1(2, 495) = 132.2, F2(2, 85) = 12.23.

3.2.2. Recovery of individual differences in effects

Correlations between the participants’ effects and the corresponding ef-

fects in the simulations were: frequency .447; neighbourhood size -.039; word

length .476; nonword length .784; lexicality .885; exception (Jared) .498; excep-

tion (R&C) .686; consistency .239; position of irregularity .671. Correlations

using the corrections for general speed (which for the model is equivalent to z-

scoring as there is no trial-to-trial variance in the model predictions) were: fre-

quency .338; neighbourhood size .034; word length .319; nonword length .527;

lexicality .647; exception (Jared) .394; exception (R&C) .556; consistency .084;

position of irregularity .572. Again, the criterion for significance is |r| ≥ .1971.11

(or |r| ≥ .164 one-tailed).

3.2.3. Effect correlations

We examined the correlations that the predicted RTs would produce be-

tween the effects, presented in Table 8. Most of the significant correlations

were positive, again consistent with the influence of general speed. The excep-

tion was neighbourhood size’s correlation with frequency, which is negative,

contrary to data. Overall, of 24 correlations that reached significance in the

data (Table 6), 19 were predicted to be significant in the correct direction, 2

not significant but in the correct direction, 2 not significant and in the incorrect

direction, and 1 significant in the incorrect direction.

The correction for general speed produced the correlations in Table 9, in

which the notable negative correlation between neighbourhood size and fre-

quency persists. Of the 6 correlations significant in the data after the adjust-

ment (Table 7), 3 were predicted significant in the correct direction (including

the artifactual correlation involving the two measures from the Rastle & Colt-

heart stimuli), 2 not significant but in the correct direction, and 1 significant in
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1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — -.287 .374 .568 .592 .191 .757 .341 .234
2. Neighbourhood Size — -.170 -.072 -.186 -.077 -.133 -.112 -.144
3. Word Length — .644 .481 .167 .015 .478 .241
4. Nonword Length — .666 -.098 .385 .250 .270
5. Lexicality — .261 .452 .435 .206
6. Exception (Jared) — .110 .631 -.052
7. Consistency — .211 .198
8. Exception (R&C) — .605
9. Pos. of Irregularity —

Table 8: Correlations between raw DRC predicted effects; the frequency effect has been reverse-
coded (sign-flipped) so that a greater benefit from higher frequency is indicated by a larger number.
Correlations significant at α = .05 (|r| > .197) are indicated in bold. R&C = Rastle and Coltheart.

1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — -.244 .232 .339 .459 .148 .774 .216 .064
2. Neighbourhood Size — -.086 .056 -.092 -.058 -.134 -.038 -.067
3. Word Length — .577 .250 .087 -.083 .323 .057
4. Nonword Length — .437 -.262 .198 .013 .007
5. Lexicality — .110 .412 .107 -.161
6. Exception (Jared) — .080 .565 -.211
7. Consistency — .172 .553
8. Exception (R&C) — .140
9. Pos. of Irregularity —

Table 9: Correlations between general-speed-adjusted DRC predicted effects; the frequency effect
has been reverse-coded (sign-flipped) so that a greater benefit from higher frequency is indicated
by a larger number. Correlations significant at α = .05 (|r| > .197) are indicated in bold. R&C =
Rastle and Coltheart.

the incorrect direction; again, this was the correlation between frequency and

neighbourhood size effects. These relationships are illustrated in Figure 3.

3.3. Discussion

Parameter modification allowed the DRC to adjust to much of the individ-

ual variation in effects shown in the data: As well as simulating the average

effects of frequency, word and nonword length, lexicality, exception, and posi-

tion of irregularity, in the data, the simulated individual differences correlated
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Figure 3: Scatterplots illustrating the pertinent individual differences correlations between general-
speed adjusted effects simulated with the DRC.
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with observed individual differences in these effects, both before and after the

adjustment for general speed.

However, closer examination revealed some problems; in particular, the

model did not succeed in capturing phenomena relating to the neighbourhood

size effect. First, although the model can produce a small facilitatory effect of

neighbourhood size under some parameter settings (Adelman & Brown, 2008a;

Coltheart et al., 2001; Reynolds & Besner, 2002, and the sets chosen for 20 of

the participants here), the mean effect for the fitted parameters was inhibitory,

suggesting that parameter sets that produce facilitatory neighbourhood size ef-

fects fit other effects less well than those producing inhibitory neighbourhood

size effects. Second, no correlation emerged between the observed and pre-

dicted neighbourhood size effects. Third, the model predicted that participants

showing strong frequency effects would show more inhibitory neighbourhood

size effects, when in the data, participants showing strong frequency effects

showed more facilitatory neighbourhood size effects.

This occurs because of a trade-off between frequency and neighbourhood

effects that was noted by Forster (1976). Consider two neighbours of differing

frequency, such as BRIGHT and BLIGHT. The neighbourhood effect requires

that a word’s neighbours are activated when that word is presented. When the

lower frequency item (BLIGHT) is presented, not only is its higher frequency

neighbour (BRIGHT) activated, it has greater activation due to its frequency.

If the combination of these two effects is too great, the lower frequency item

will be mistaken as its higher frequency neighbour. As such, parameter sets

that produce both effects strongly are not acceptable due to their unreasonably

high error rate, and thus were rejected as candidates to represent participants

in the modeling. Thus, the parameter sets that were retained in the modeling

to represent individual participants show either a strong frequency effect or

a facilitatory neighbourhood size effect (and a weaker frequency effect), thus

producing a negative correlation.

One possible explanation of the pattern in the human data is given by the

idea of lexical precision and the lexical tuning hypothesis (e.g. Andrews, 2012;
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Andrews & Hersch, 2010; Castles, Davis, Cavalot & Forster, 2007): Experience

with a word increases the quality of the representation of that word so that it

is easier to distinguish from its neighbours. That is, a higher frequency word

is not only more easily recognized, it is more easily rejected when it is not

the stimulus. As such, the higher frequency neighbor (BRIGHT) of a low fre-

quency stimulus (BLIGHT) usually ceases to be a candidate for identification

sufficiently early that misidentification does not occur.

This is consistent with Andrews and Hersch’s (2010) criticism of interactive-

activation based models: These models simulate an individual with perfect

orthographic knowledge — perfect spelling — rather than allowing for impre-

cise representation, which appears to be a key source of variability between

even individuals who can competently read. Modulation of the parameters

of the model could not mimic this, probably because this kind of variation in

lexical quality is selective to low-frequency words, whereas the parameters are

not. Whilst such individual differences in lexical quality of known words are

correlated with vocabulary, the importance of spelling over vocabulary as a

predictor of the priming effects in these studies implicates lexical quality as the

actual cause9.

Furthermore, the model underestimated the overall magnitude of regular-

ity and consistency effects. This may be because nonlexical influences operate

directly only on pronunciation, and the effect on lexical activation is weak be-

cause it is indirect. That is, exceptional spelling-sound correspondences pri-

marily affect pronunciation, rather than lexical access itself. Alternatively, the

problem could be to do with the assembly of nonlexical phonology itself, which

the CDP+ model was designed to improve relative to the DRC.

9Moreover, allowing vocabulary to vary with an additional parameter (minimum frequency of
word known) did not improve the model’s ability to capture the frequency–neighbourhood-size
correlation.
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4. MODELLING: CONNECTIONIST DUAL PROCESS MODEL

The first complete version of the connectionist dual process model, the

CDP+ (Perry et al., 2007), can be seen as a modification of the DRC to incor-

porate graded spelling-sound correspondences that are learned by the delta

rule, and a more structured phonological representation; its authors argue it

offers a more complete explanation of the item effects attested in the literature.

4.1. Method

Modelling with CDP+ was similar to that performed for the DRC, except

the model was, of course, that described by Perry et al. (2007)10, and the pa-

rameters based upon those used in that paper, detailed in Appendix E; where

a parameter was common to the DRC and CDP+, the same parameter range

was used as for the DRC. 3,505 parameter sets were retained as passing the

fewer-than-60-errors criterion. The mean R2 obtained was 36.97%.

4.2. Results

4.2.1. Standard effects

We checked the CDP+’s predictions for the standard effects with these pa-

rameters; the predicted means for each condition are in Table 4. The corre-

sponding ANOVAs follow, and are also summarized in Table 5.

Frequency. A significant effect of shorter response times for more frequent

words was found, F1(4, 396) = 47.77, F2(4, 80) = 18.36.

Neighbourhood size. The words with lower neighbourhood size were predicted

to have more rapid responses than the matched words with high neighbour-

hood size. This miniscule (less than 0.1 ms) difference was only significant by

subjects, F1(1, 99) = 4.12, p = .045, F2(1, 39) = 0.00. This is suggestive of

the model being very sensitive to a slight mismatch of the neighbourhood size

10There has been further development of this model, primarily in terms of extension to multisyl-
labic vocabulary, but this is the version that was available at the time we began the time-consuming
simulations, and the one most comparable to the published version of the DRC.
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stimuli (that is not significant across pairs), and an effect of this magnitude

obviously cannot be treated as a substantive prediction of the model.

Length and lexicality. Predicted RTs increased with length for words,

F1(2, 198) = 21.26, F2(2, 60) = 30.71, and nonwords, F1(2, 198) = 95.15,

F2(2, 60) = 21.75. Nonwords were read slower, F1(1, 495) = 1014,

F2(1, 150) = 1091, and the length effect was stronger for nonwords,

F1(2, 495) = 13.61, F2(2, 150) = 13.41. The estimated means adjusting

for neighbourhood size were 552, 553, and 554 ms for words, and 596, 603, and

614 ms for nonwords.

Regularity and consistency.

Regularity. Jared’s (2002) exception stimuli with high-frequency enemies

had greater predicted RTs than their controls, which was significant by-

subjects, F1(1, 99) = 84.12, but not by-items, F2(1, 17) = 0.01, and a similar

pattern held for the exceptions with low-frequency enemies, F1(1, 99) = 67.83,

F2(1, 19) = 0.10.

Consistency. The regular-inconsistent stimuli with high-frequency enemies

were given longer predicted RTs than their controls by a miniscule amount (dif-

ferent in the third decimal place), again only significant by subjects, F1(1, 99) =

6.063, F2(1, 19) = 0.04. This predicted effect is not comparable in size to that in

the data. For those regular-inconsistent stimuli with low-frequency enemies,

the slower predictions than their controls again reached significance only by

subjects, F1(1, 99) = 7.436, p = .008, F2(1, 19) = 0.73; this is not the direction in

the data.

Position of irregularity. Exception words whose irregularity was in first

position were predicted to have RTs longer than their matched controls,

F1(1, 99) = 193.0, F2(1, 19) = 5.34, p = .032, but those in second position

were not, F1(1, 99) = 1.47, p = .228, F2(1, 38) = 0.12. The prediction that

third position irregulars would be read more quickly than their controls was

significant only by subjects, F1(1, 99) = 30.34, F2(1, 28) = 3.66, p = .066; this
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is not the direction in the data. The position by regularity interaction was

significant, F1(2, 495) = 141.1, F2(2, 85) = 9.48.

4.2.2. Recovery of individual differences in effects

Correlations between the participants’ effects and the effects in the corre-

sponding CDP+ simulations were: frequency .382; neighbourhood size .020;

word length .464; nonword length .612; lexicality .931; exception (Jared) .151;

exception (Rastle and Coltheart) .514; consistency .224; position of irregularity

.491. With the adjustments for general speed applied, the correlations were:

frequency .221; neighbourhood size .113; word length .317; nonword length

.558; lexicality .766; exception (Jared) .001; exception (Rastle & Coltheart) .557;

consistency .239; position of irregularity .438.

4.2.3. Effect correlations

We examined the correlations that would emerge from the predicted RTs,

presented in Table 10. Again, many positive correlations were obtained, con-

sistent with the influence of general speed. Nevertheless, three of the signif-

icant correlations were negative, two involving consistency. Of these, one —

the correlation between consistency and exception (Jared stimuli) effect — was

surprisingly contrary to a significant positive correlation in the data. Overall,

of the 24 correlations significant in the data (Table 6), 7 were predicted signifi-

cant in the correct direction and 6 not significant in the correct direction. Of the

11 predicted in the wrong direction, 3 were significant.

The correlations using the predictions adjusted for general speed in Table 11

showed negative correlations involving consistency and effects assumed to be

nonlexical, and a positive correlation with frequency; the corresponding effects

in the data did not reach significance. Of the six general-speed-adjusted corre-

lations significant in the adjusted data (Table 7), two were predicted significant

in the correct direction, two significant in the incorrect direction, and two not

significant in the correct direction. These relationships in the simulations are

illustrated in Figure 4. The correlation between lexicality and word length was
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1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — .186 .490 -.040 .565 -.093 .422 .103 .089
2. Neighbourhood Size — .128 -.122 .091 .286 .004 .343 .225
3. Word Length — .095 .557 .022 -.014 .002 .099
4. Nonword Length — .345 .023 -.071 -.225 -.189
5. Lexicality — -.123 .260 -.155 -.011
6. Exception (Jared) — -.298 .365 .159
7. Consistency — -.214 -.111
8. Exception (R&C) — .929
9. Pos. of Irregularity —

Table 10: Correlations between raw CDP+ predicted effects; the frequency effect has been reverse-
coded (sign-flipped) so that a greater benefit from higher frequency is indicated by a larger number.
Correlations significant at α = .05 (|r| > .197) are indicated in bold. R&C = Rastle and Coltheart.

1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — .109 .326 -.217 .421 -.209 .450 -.187 -.018
2. Neighbourhood Size — .114 -.194 -.001 .261 -.048 .315 .209
3. Word Length — -.032 .381 -.001 -.096 .030 .081
4. Nonword Length — .134 -.033 -.156 -.302 -.289
5. Lexicality — -.289 .212 -.311 -.199
6. Exception (Jared) — -.315 .312 .073
7. Consistency — -.204 -.110
8. Exception (R&C) — .933
9. Pos. of Irregularity —

Table 11: Correlations between general-speed-adjusted CDP+ predicted effects; the frequency ef-
fect has been reverse-coded (sign-flipped) so that a greater benefit from higher frequency is indi-
cated by a larger number. Correlations significant at α = .05 (|r| > .197) are indicated in bold. R&C
= Rastle and Coltheart.

predicted correctly, as was the artifactual correlation between exception (Rastle

& Coltheart) and position of irregularity effects. The incorrectly simulated cor-

relations were that between frequency and nonword length and that between

exception (Jared) and lexicality, which both were simulated as negative when

they were positive in the human data. Neighbourhood size’s correlations with

frequency and lexicality effects were in the correct direction (positive and neg-

ative, respectively) but not significantly so, and practically zero for lexicality.
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Figure 4: Scatterplots illustrating the pertinent individual differences correlations between general-
speed adjusted effects simulated with the CDP+.
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4.3. Discussion

Parameter modification allowed the CDP+ to capture much of the individ-

ual variation in effects. Moreover, the CDP+’s R2s for the individual partici-

pants were better than those for the DRC. However, it did so in a way that was

inconsistent with some aspects of the correlational structure of the data, and

some effects were not predicted reliably with the chosen parameters.

In terms of effects, the most notable feature was the very weak prediction

of consistency effects with the parameters chosen to fit these data. Given that

these are a major motivation for the CDP+, and these effects were consistent

in Perry et al.’s (2007) simulations, it is surprising that the present simulations

did not obtain them.

Given that there do exist parameter values that would produce the effect,

the problem must be that parameter values that produce the effect were not

selected because they fit the data less well in terms of R2. In particular, given

that there was also no second-position exception effect in the predictions (also

present in Perry et al.’s (2007) simulations), it appears parameters were selected

that slowed the nonlexical route so that it only processed the first letter during

word processing.

The selection of parameters that effectively remove the second-position ex-

ception effect and consistency effect could in principle have occurred either

because of a present effect problem — that is, the parameters that would pro-

duce the missing effects compromise an effect (or the magnitude of an effect)

that accounts for more variance. However, it is difficult to see how candidate

variables for producing this type of problem — such as frequency and lexical-

ity — could affect the second-position exception effect in this way for the CDP+

but not the DRC, given their similar structure. Even if this is the case, this is

not a flaw in the parameters, it is a problem with the model: The model can-

not predict the magnitudes of effects shown simultaneously in the data with a

single parameter set (per participant).

An absent effect problem — that is, the parameters with a second-position

exception effect and a consistency effect introduce a predicted effect that does
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not occur in the data — might instead explain the problems in these simu-

lations, as this could readily be attributed to a single difference between the

CDP+ and the DRC. For instance, the graded (proportional) spelling-sound

consistencies to which CDP+ is sensitive may include some to which people

are not sensitive; this would also explain why people more often read non-

words like the DRC than like the CDP+ (Pritchard et al., 2012).

Indeed, many of the stimuli have vowels in second position, and most

vowel graphemes have several possible pronunciations, so precisely how

people process the vowels (e.g., are correspondences used for the whole

body/rime of the word, rather than for the vowel alone) may strongly

influence the fits.

Two correlations were predicted with the wrong direction in these simula-

tions. One was a predicted negative correlation between frequency and non-

word length; this appears to reflect a straightforward trade-off between the

lexical process producing the frequency effect and the nonlexical process pro-

ducing the nonword length effect. Whilst the DRC has the same structure, this

trade-off is less marked in the DRC because in that model the nonlexical con-

tribution is the same for all regular words of matched length.

The other problematic correlation was a predicted negative correlation be-

tween exception (Jared) and lexicality effects; this probably relates to the role

of the nonlexical route: When the nonlexical route is more efficient, this intro-

duces an exception effect (albeit a slight one for these stimuli), and nonwords

are read more quickly, reducing the lexicality effect11.

Given that the introduction of graded spelling-sound correspondences to

the nonlexical route did not allow the CDP+ to improve on the DRC’s patterns

of predictions for our individual differences data, we instead explored a vari-

ety of alternative models, including a modification to the DRC’s lexical route

designed to mimic the alternative suggestion that differences in lexical repre-

11Because the parameter sets chosen for the DRC do show second-position exception effects, the
size of these effects is more modulated by the size of the contribution of the nonlexical route, which
is greater when the lexical route is slow (and lexicality effects are large).
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sentation quality (rather than acccessibility) are linked to frequency (see §3.3).

5. MODELING: DUAL-ROUTE CASCADED MODEL WITH FREQUENCY-

WEIGHTED CONNECTIONS

We explored a variety of modifications to the DRC that might make it more

consistent with the data; we chose DRC as the base model because its base per-

formance had fewer inconsistencies with the data, and because models that did

not require new training for each parameter set could be explored more rapidly.

These modifications included: using CDP+’s phonological representation; us-

ing a vowel-centered orthographic representation; modifying the functional

form of frequency effects (cf. Adelman & Brown, 2008b); allowing the parame-

ter controlling the frequency effect to be different for the phonological lexicon

than the orthographic lexicon; introducing a direct set of connections from the

nonlexical route to the phonological lexicon; allowing participants to vary in

vocabulary size by removing low-frequency items; and moving the locus of

the frequency effect from bias on lexical units to be in the weights connecting

orthography and phonology.

Of the various modifications we examined, the last-named — making

frequency have its effect through the connection strength between the or-

thographic and phonological lexical units (see Besner, Moroz & O’Malley,

2011, for arguments in favour of this mechanism for frequency effects), rather

than the bias on those units — made the most progress towards resolving

the inconsistencies with data that the DRC showed (without introducing new

incorrect predictions), when combined with the changes to orthographic and

phonological representations (to be vowel-centered and onset-vowel-coda,

respectively; the former was the more important change). We will call this

model DRC-FC. We now describe in detail how DRC-FC differs from DRC,

and our simulations with the DRC-FC model.
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5.1. Method

5.1.1. Model: Differences between the DRC and DRC-FC

Implementation of frequency. The direct influence on the input (the biased in-

put) to the word units in the orthographic and phonological lexicons was re-

moved; this is equivalent to setting the frequency scaling parameter to zero.

Instead, the excitation weight on each connection from an orthographic unit to

a phonological unit was adjusted by multiplying by a value representing the

orthographic frequency from CELEX (the same value as used to produce the

biasing input to the orthographic lexical units in DRC). Similarly, the excita-

tion weight on each connection from a phonological unit to an orthographic

unit was adjusted by multiplying by a value representing the phonological fre-

quency from CELEX (the same value as used to produce the biasing input to

the phonological lexical units in DRC). The multiplers were calculated by di-

viding the log. orthographic/phonological frequency of the word by the log.

orthographic/phonological frequency of the most frequent word (as is used for

the bias in the base DRC), and multiplying by a frequency weighting parameter

(which was common to both directions of connection).

Orthographic coding scheme. Orthographic representations were left-padded

with spaces so that the first vowel (counting Y as a vowel if it was not the

initial letter) was in fourth position, and the right-padding with spaces

reduced accordingly. The grapheme-phoneme translation system ignored

these preceding spaces (but did not add additional following spaces), so that

when nonlexical processing was initiated, the first letter, not a space, was

immediately processed. This, combined with the following modification, was

examined because of the possiblity it might allow rime-based neighborhood

or consistency processing along the lexical route.

Phonological coding scheme. Phonological representations were modified to use

separate slots for onset, vowel, and coda, as in the CDP+ (rather than the left-

alignment of the DRC) but the representation of the blank (missing) phoneme
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as a distinct unit (rather than a stable near-zero activity) was retained from

the DRC. Thus, the phoneme representation for items with fewer than three

phonemes in the onset had the blank phoneme unit active in some of the onset

slots. This permitted the rule for timing of initiation of pronunciation of the

DRC to be used with the minor alteration that the terminating blank needed

to be after the vowel. It was therefore necessary for the nonlexical route to

activate these blank units to produce a pronunciation. It did so at the same

time it activated the vowel, and the strength of the input to these blank units

was the same as that to the vowel unit.

5.1.2. Parameter settings, stimuli, procedure and per-participant selection

All other aspects of the methods were the same as those for the DRC, with

the exception that a new range of values was needed for the frequency weight-

ing parameter of the new frequency mechanism; the range of all parameter

values is given in Appendix E. After the removal of parameters sets produc-

ing too many errors 3,548 parameter sets remained. The mean R2 of the fitted

sets was 35.72%.

5.2. Results

5.2.1. Standard effects

We examined DRC-FC’s predictions for the standard effects with these pa-

rameters; the predicted means for each condition are in Table 4. The corre-

sponding ANOVAs follow, and are also summarized in Table 5.

Frequency. Shorter response times were predicted for more frequent words

than for less frequent words, F1(4, 396) = 32.39, F2(4, 80) = 6.12.

Neighbourhood size. The words with higher neighbourhood size were predicted

to have more rapid responses than the matched words with low neighbour-

hood size. This small (0.6 ms) difference was only significant by subjects,

F1(1, 99) = 4.31, p = .041, F2(1, 39) = 1.45, p = .235.
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Length and lexicality. The longer a word, the slower its predicted la-

tency, F1(2, 198) = 34.04, F2(2, 60) = 36.01, and likewise for nonwords,

F1(2, 198) = 50.32, F2(2, 60) = 31.82. Nonwords were read slower,

F1(1, 495) = 1106, F2(1, 150) = 3558, and the length effect was stronger

for nonwords, F1(2, 495) = 6.51, p = .001, F2(2, 150) = 16.83. The estimated

means adjusting for neighbourhood size were 550, 551 and 553 ms for words,

and 602, 604 and 612 ms for nonwords.

Regularity and consistency.

Regularity. Jared’s (2002) exception stimuli had greater predicted RTs than

their controls, whether in the group of items with higher-frequency enemies,

F1(1, 99) = 75.79, F2(1, 17) = 9.48, p = .007, or low-frequency enemies,

F1(1, 99) = 52.30, F2(1, 19) = 13.16, p = .002.

Consistency. Differences between the regular-inconsistent stimuli and their

regular controls were small and not significant, for both the items with high

frequency enemies F1(1, 99) = 2.54, p = .114, F2(1, 19) = 0.01, and those with

low-frequency enemies, F1(1, 99) = 2.10, p = .151, F2(1, 19) = 0.21.

Position of irregularity. First position exceptions were predicted to have RTs

longer than their matched controls, F1(1, 99) = 222.26, F2(1, 19) = 8.51, p =

.009, as were second position exceptions, F1(1, 99) = 15.80, F2(1, 38) = 6.64,

p = .014. The cost for third position irregularities was small and significant

by-subjects, F1(1, 99) = 9.24, p = .003, and significant with one-tailed correc-

tion by-items, F2(1, 28) = 3.00, p = .094. The position by regularity interaction

was significant, F1(2, 495) = 113.79, F2(2, 85) = 10.30.

5.2.2. Recovery of individual differences in effects

Correlations between the participants’ effects and the effects in the corre-

sponding DRC-FC simulations were: frequency .269; neighbourhood size .121;

word length .475; nonword length .597; lexicality .878; exception (Jared) .405;

exception (Rastle and Coltheart) .591; consistency .324; position of irregularity

.600. With the adjustments for general speed applied, the correlations were:
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1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — .235 .297 .463 .412 -.133 .569 .002 .170
2. Neighbourhood Size — .615 .174 .071 -.198 -.279 .716 .375
3. Word Length — .421 .411 .294 -.145 .442 .248
4. Nonword Length — .408 .065 .294 .101 .062
5. Lexicality — .425 .361 .275 .036
6. Exception (Jared) — .162 .718 -.003
7. Consistency — .088 -.001
8. Exception (R&C) — .638
9. Pos. of Irregularity —

Table 12: Correlations between raw DRC-FC predicted effects; the frequency effect has been
reverse-coded (sign-flipped) so that a greater benefit from higher frequency is indicated by a larger
number. Correlations significant at α = .05 (|r| > .197) are indicated in bold. R&C = Rastle and
Coltheart.

frequency .167; neighbourhood size .156; word length .274; nonword length

.485; lexicality .670; exception (Jared) .294; exception (Rastle & Coltheart) .467;

consistency .234; position of irregularity .537.

5.2.3. Effect correlations

We examined the correlations of the effects given by the predicted RTs, pre-

sented in Table 12. The influence of general speed was again apparent in the

abundance of positive correlations. Two correlations were nevertheless signif-

icantly negative in the predicted data, where those in the observed data were

not significant (postive). Overall, of the 24 correlations significant in the data

(Table 6), 14 were predicted significant in the correct direction and 8 not signif-

icant in the correct direction. Of the 2 predicted in the wrong direction, neither

was significant.

The correlations using the predictions adjusted for general speed in Table 13

showed four negative correlations, none of which was significant in the data.

Of the six general-speed-adjusted correlations significant in the adjusted data

(Table 7), five were predicted correctly (and significantly), and one not signifi-

cant in the incorrect direction (see Figure 5). The negative correlation between

neighborhood size and lexicality was the effect not produced by DRC-FC.
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Figure 5: Scatterplots illustrating the pertinent individual differences correlations between general-
speed adjusted effects simulated with the DRC-FC.
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1. 2. 3. 4. 5. 6. 7. 8. 9.
-Frq Nei WLen NWLen Lex ExcJ Cons ExcRC PoI

1. (neg.) Frequency — .249 .316 .386 .269 -.297 .464 -.161 .024
2. Neighbourhood Size — .587 .137 .041 -.200 -.263 .153 .282
3. Word Length — .414 .264 .117 -.168 .300 .072
4. Nonword Length — .235 -.054 .207 -.010 -.029
5. Lexicality — .245 .285 -.054 -.295
6. Exception (Jared) — .099 .624 -.171
7. Consistency — -.004 -.104
8. Exception (R&C) — .598
9. Pos. of Irregularity —

Table 13: Correlations between general-speed-adjusted DRC-FC predicted effects; the frequency
effect has been reverse-coded (sign-flipped) so that a greater benefit from higher frequency is in-
dicated by a larger number. Correlations significant at α = .05 (|r| > .197) are indicated in bold.
R&C = Rastle and Coltheart.

5.3. Discussion

Like its relatives, DRC-FC accommodated individual differences in effects

by changes in parameters. Unlike the other models, in its general-speed-

adjusted data, it correctly produced a significant positive correlation between

frequency and neighbourhood size effects. In common with the other models,

it did not produce a consistency effect comparable to the data, nor a negative

correlation between neighbourhood size and lexicality effects.

Introducing vowel-alignment in orthographic and phonological represen-

tations did not improve the model’s reproduction of the consistency effect. If

(as previously discussed) the consistency effect largely results from residual

priming of a word’s friends and enemies — rather than purely the stimulus

activating its own friends and enemies — then this would explain why all the

models considered here — where activities are reset for each trial — do not

fully capture the effect.

The key improvement with the DRC-FC is correctly catpuring the posi-

tive correlation between frequency and neighbourhood size. DRC-FC’s ability

to capture this pattern — perhaps counterintuitively — appears to rely upon

the two effects occuring at different stages within the same route. Where the

DRC has both effectively occurring at the lexical units, high frequency tends
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to increase lexical inhibition, making neighbourhood size effects inhibitory for

those showing strong frequency (and overall). In the DRC-FC, a stronger fre-

quency effect can increase the influence of neighbours by passing more acti-

vation from orthographic to phonological layers. Alternatively, if these effects

are now controlled by different parameters, these parameters are free to corre-

late in whichever direction is necessary to capture the relationship between the

effects.

From a learning perspective, it seems reasonable that the strength of asso-

ciation between orthographic and phonological forms should depend on the

number of learning episodes. Whilst this may appear to run counter to other

findings that suggest that orthographic units are sensitive to frequency, there

could be additional loci of the frequency effect beyond that in DRC-FC, and

some tasks that appear to be wholly orthographic may actually drive partici-

pants to make decisions that are based on phonological activity (Rastle & Brys-

baert, 2006). It still, however, seems implausible that there is no purely visual-

orthographic frequency effect, but this may occur on the links between letters

and words. One way in which such an account could avoid the BLIGHT-BRIGHT

problem is if the frequency effect operates more effectively on inhibitory than

facilitatory inputs, so that the frequency benefit is only seen for exact matches.

6. GENERAL DISCUSSION

We now recapitulate the main empirical and modelling findings, consider

notable aspects of the empirical findings, consider the implications for models,

and conclude with future directions.

6.1. Summary of findings

6.1.1. Effects in the data

The data broadly showed the typical patterns that we sought: Frequent

words were read more quickly than rare ones (Forster & Chambers, 1973);

the slowing by length Frederiksen & Kroll (1976)was greater for nonwords
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than words (e.g., Weekes, 1997); words violating spelling-sound rules were

read slower than those that did not (e.g., Seidenberg et al., 1984), especially

if those violations were early in the word (Rastle & Coltheart, 1999); (some)

words whose pronunciations were inconsistent with those that shared an or-

thographic body (vowel onwards) were read slower than those with no such

inconsistency (e.g., Jared, 2002). The evidence was not strong for a facilitatory

neighbourhood size effect (see Andrews, 1997), because that effect was moder-

ated by age, with our older participants showing less facilitation, and possibly

inhibition, consistent with past research (Spieler & Balota, 2000).

6.1.2. Correlations in the data

We sought correlations among key item effects in word naming, and found

many. Most of these could be attributed to general speed, but others could

not: positive relationships with frequency effects for neighbourhood size and

nonword length effects; positive relationships with lexicality for word length

and exception effects; and negative relationships with neighbourhood size for

lexicality and exception effects.

6.2. Modeling the data

Whilst we were able to offer an interpretation in terms of dual route theory,

we were concerned that most correlations could have been predicted either

way. This is a general problem with attributing individual differences to routes

without a detailed implementation of their properties and how their contribu-

tions are combined. This is because a route’s effect may be weak because it is

fast or because it is too slow. If it is too fast, its fastest and slowest responses

differ little in speed. If it is too slow, it may be outpaced by the other route and

have little influence on the result. We therefore ran implemented dual route

models — the DRC and CDP+, and a modified DRC, the DRC-FC — to see if

they could capture the data by changing parameters on a participant by partic-

ipant basis.

In these simulations, we selected for each participant the parameter values
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giving the best correlation with his or her individual item mean response times

(once first phoneme was partialed out). This technique gives a more complete

view of model performance than techniques that fit only condition means or

effects. These non-item-level model selection procedures would indeed have

found parameters that made better predictions about the effects we built into

the experiment. However, the parameters could make very bad predictions

about other unexamined (and possibly unknown) effects that contribute to the

response times of the items in the experiment and still be selected. Regard-

less of the effects that we intend to use to interpret the modeling data, all effects

place constraints (of the compatibility type discussed in §1.1.3) on how the cog-

nitive mechanisms must operate.

Whilst, unsurprisingly, the fitting procedure gave the models some capa-

bility to predict a large effect of some variable for those who showed a greater

effect of that variable, more detailed examination suggested that the models

did not capture this variation in a way that was compatible with the data.

6.2.1. DRC

The parameters best fitting the subject-and-item-level data for the DRC led

the model to produce no consistency effect, a negative correlation between the

frequency and neighborhood size effects, and no correlations between the lexi-

cality effect and either the neighbourhood size or exception effect, inconsistent

with the data. The model with these parameters did correctly capture the three

other correlations of interest, as well as the other overall patterns, albeit not

always with their full magnitude.

6.2.2. CDP+

The parameters best fitting the subject-and-item-level data for the CDP+

led the model to produce no consistency effect, an exception effect that was re-

stricted to first-position irregularities, a negative correlation between lexicality

and exception effects, a negative correlation between frequency and nonword

length effects, and no correlations of neighborhood size with either frequency
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or regularity, inconsistent with the data. The model with these parameters

did correctly capture the other two correlations of interest, as well as the other

overall effects, albeit not always with their full magnitude.

6.2.3. DRC-FC

The parameters best fitting the subject-and-item-level data for the DRC-FC

led the model to produce no consistency effect, and no correlations between

the lexicality effect and the neighbourhood size effect, inconsistent with the

data. The model with these parameters did correctly capture the five other

correlations of interest, as well as the other overall effects, albeit not always

with their full magnitude.

6.3. Interpretation of the data

6.3.1. General speed does not accommodate all individual differences

There was a strong overall pattern of positive correlations in the raw ef-

fects. Adjustments for general speed indicated that many of these positive

correlations were attributable to a general speed multiplier affecting all the

(signal) processes. However, five significant non-artefactual correlations per-

sisted, which were indicative that systematic individual differences exist that

are not due to general speed. Verbal dual route interpretations could be placed

on these, but we sought to replace these verbal interepretations with the mod-

eling.

6.3.2. Lexical quality and reading experience

The concept of lexical quality seemed important for interpreting the data,

despite its having no clear analog in the models of interest. Lexical quality

(e.g., Andrews & Hersch, 2010; Perfetti, 1992) refers to the idea that the specific

orthographic, phonological or semantic-syntactic information associated with

a particular word can vary in how well-specified it is; being poorly specified

means that particular information — such as the ordering of adjacent I and E

— about a word is missing. The degree of underspecification of a word’s in-

formation can vary so that receptive language outperforms production (e.g.,
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recognizing a correctly spelled word despite spelling it incorrectly yourself).

Although lexical quality is a concept that applies at the level of the individual

word within the individual person, it also can be applied as an average over

the words a person knows: individuals who have learned a language more

— due to greater experience and/or greater efficiency of learning — will have

on average better lexical quality across lexical items. This offers a natural ex-

planation of otherwise difficult phenomena, such as the observed correlation

of neighbourhood size and frequency effects, because it naturally links both

neighbourhood and frequency effects to (lack of effective learning) experience.

In particular, the constraint-based approach implied by lexical quality means

that as words become better learned, they might be more activated by perfect

matches but they should also be more readily distinguished from close mis-

matches.

Consistent with this, older participants (having more reading experience)

also showed less facilitatory neighbourhood size effects, consistent with finer-

tuned input representations — that is, higher lexical quality — reducing the

generalization that would support such facilitation.

This interpretation also offers a possible view on analyses that suggest fre-

quency effects can be effectively predicted from vocabulary size. Developmen-

tally, lexical quality is determined by exposure to lexical items and by ability

to form and refine representations from such exposure. These are the same fac-

tors that would be responsible for vocabulary size; indeed vocabulary can be

seen as a person-level measure of lexical quality computed on an all-or-none

basis over possible lexical items (i.e., all words in the dictionary). It is there-

fore possible to interpret results that suggest an influence of vocabulary size

as instead being due to lexical quality (on average for an individual over the

relevant lexical entries).

6.3.3. Changes within individuals within the experiment

Session-to-session changes. For the most part, the average participant responded

slower in the later sessions of naming, although such patterns may not bear out
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at the level of the individual participant (see Adelman et al., 2013, for data for

many sessions). This was not associated with an increase in the sizes of the

effects of interest, which might be expected from a stretching of the main pro-

cess of naming. That is, the slowing occurred in the “intercept” part of the

process unaffected by the identity of the stimulus. Indeed, the only significant

interactions with session were such that effects became smaller over sessions,

because the slowest conditions (exception words, long nonwords) were rela-

tively immune to the slowing effect. This may reflect participants strategically

compensating for their slowing only for those responses they perceived at risk

of falling after stimulus offset.

Trial-to-trial changes. To be consistent with the models in question and typi-

cal word naming experimental analyses, we have excluded possible effects of

long-term priming from our analyses. The implied assumption is that such ef-

fects will average out over the several different orderings of the stimulus list

and result in all words being read on average the same amount faster than the

baseline notionally unprimed condition. This assumption is problematic for

the analyses here, however, because each participant only saw three orderings,

which does not allow for a great deal of averaging out, and the natural estimate

of reliability is the test-retest one. Worse, though, there are good reasons to sup-

pose the assumption is wrong. First, words may differ in their susceptibility to

priming (e.g., Kinoshita, 2006); if a truly neutral baseline is not achieved, more

primeable words will have shorter RTs on average, but not reliably. Second,

words may differ in the number of possible preceding words that would prime

them12; words with more related primes will on average be more primed, thus

having shorter RTs. The latter type of process may be particularly relevant to

the consistency effect, as there is long-term rime priming (Seidenberg et al.,

1984), and, indeed, this was an effect that showed low consistency in our data.

Clearly, models that do not adapt to the trial sequence could not give a correct

12Indeed, this may be the source of primeability — words that have many related primes may
typically be in the primed state, and thus be difficult to prime.
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account of the effect if this were true.

6.4. Modeling interpretations

6.4.1. DRC

For the DRC, the key problems in the simulations related to effects that have

previously been identified as problematic for this model and its relatives. The

patterns with the neighbourhood size effect — its overall inhibitory effect in

the model (albeit to a degree that would be undetectable in the data) and its

negative correlation with the frequency effect — were suggestive that a mod-

ification to the model is needed that weakens its knowledge of the spelling

correspondences of lower-frequency words; it is unclear how this could occur

without broader changes in its letter level to remove the heavily criticised as-

sumption of perfect knowledge of letter position (e.g., Davis, 2010; Grainger &

van Heuven, 2003). A representation that is somewhat redundant could have

the desired effect. The somewhat weak but correct consistency effect with flex-

ibility in parameters is suggestive of an incomplete ability to account for the ef-

fect. Indeed, although significant, the effect was so small once converted from

cycles to milliseconds that we would expect essentially no power to detect the

effect in the data, where a strong effect was in fact observed. As models be-

come more and more refined, increased attention to the precision of predicted

effects will be warranted.

Given that (for instance) CRATE and LATE are wholly dissimilar in the DRC

model both orthographically and phonologically, the absence of a strong con-

sistency effect is perhaps not surprising. A complete sensitivity to rime struc-

ture requires some alteration to the orthographic coding, as was already indi-

cated, and to the phonological coding, perhaps to reflect the linguistic structure

of the syllable, as in CDP+13.

13However, in modeling not presented in detail here, such changes were not sufficient to produce
a consistency effect of appropriate magnitude when the parameters are constrained by other effects
in the data.
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6.4.2. CDP+

For the CDP+, the problems appeared more systemic. The model parame-

ters that best fitted the data had an excessively severe position of irregularity

effect, such that late irregularities and inconsistencies did not exert an influence

from the nonlexical route. This is suggestive that properties of the predictions

from the nonlexical route were discrepant from the data in a way that meant

that fits to the data were better when the nonlexical route’s influence was min-

imised. Whilst it is known that the CDP+ model can produce consistency ef-

fects on the average of conditions selected to differ in consistency (Perry et al.,

2007), examining only differences in condition means can obscure other prob-

lems in the predictions (see, e.g., Besner, Twilley, McCann & Seergobin, 1990),

and the item R2 criterion was chosen to prevent models taking advantage of

this obfuscation opportunity. Although the ability to fit consistency condition

means has previously been taken as an advantage for the more graded nonlexi-

cal route of the CDP+, there are pseudoword stimuli for which human naming

responses are more like those of the DRC than those of the CDP+ (Pritchard

et al., 2012). One possible consideration here is that the CDP+ is trained on

monosyllabic words, whereas no such constraint applies in humans’ learning

of spelling-sound relationships. If this is the problem, then the newer CDP++

(Perry, Ziegler & Zorzi, 2010) would resolve the problem.

However, the problems the CDP+ has could also be more to do with the

structure of the network that learns the spelling-sound correspondences. The

network’s structure is sensitive to a form of consistency that is correlated with,

but not the same as, the type of consistency manipulated in experiments show-

ing the effect in humans. CDP+ is sensitive only to grapheme-level consistency,

not rime-level consistency. CDP+’s nonlexical route has no way to represent

specifically that OOD is often pronounced /Vd/ (as in hood) or OOM is often

pronounced /u:m/; it instead would have to represent that (1) OO makes /V/

and /u:/ both somewhat likely; and (2) that a post-vocalic M makes /u:/ a more

likely vowel and a postvocalic D makes /V/ a more likely vowel, and these ef-
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fects would be independent. (Over the whole vocabulary, this might not be the

overall learned pattern — the point here is to illustrate the types of representa-

tions possible in the two-layer network.) That is, the effect of the orthographic

consonant on the phonological vowel can not be specific to the particular ortho-

graphic vowel context: /u:/ would (ignoring the influence of the other learning

patterns) be more activated by the nonlexical route in response to RIM than RID,

and /V/ is more activated by the nonlexical route in response to RID than RIM.

This differs substantially from other connectionist accounts (e.g., Plaut et al.,

1996) because it uses a network with no hidden units to map from graphemes

to phonemes, and so can not learn larger units than a grapheme. In common

with these models, however, the position-specific nature of the spelling-sound

relationships learned by CDP+ is a likely cause of problems with nonwords

that have graphemes in atypical positions, where people do clearly attempt to

generalize across position.

6.4.3. DRC-FC

The changes made to the DRC to make the DRC-FC circumvented some

problems with the fit to the effect correlations. By placing the frequency effect

on the links between orthography and phonology, the deleterious effects of the

combination of neighborhood activity and a benefit in bias for frequent words

is achieved. By limiting the influence of frequency on orthographic nodes to

feedback from the phonological nodes, higher-frequency neighbors were un-

able to overwhelm items, even when neighborhood size effects were large.

However, it seems unlikely that there are no purely orthographic frequency

effects, as this model would suggest. Moreover, in this case, there is no obvi-

ous single root cause that produces neighbourhood and frequency effects —

the positive correlation between them is likely produced by covarying param-

eters, rather than a constraint in the model. Moreover, the model also still did

not produce frequency and length effects of a magnitude consistent with the

data.
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6.4.4. PDP

Other connectionist, parallel-distributed-processing (PDP: e.g., Harm &

Seidenberg, 1999; Plaut et al., 1996; Seidenberg & McClelland, 1989) models

were, however, excluded from our consideration for three main reasons. The

first is that it is at odds with the intent (and epistemology) of the modellers

who produced them: Whilst the modellers responsible for the DRC and CDP+

treat the details of each effect as a constraint that should be included into a

complete true model, modellers using PDP emphasise that the explanation or

principle of a certain phenomenon is true, and explicitly deny that the model

is itself a representation of the truth at any other level of abstraction. As such,

an attempt to falsify such a model is meaningless, as it would falsify no claim

of the author. The second reason is a corollary of this approach. Given that no

model is intended to be correct, we would have no rule to select the correct

model for our data: no model is correct, no model supersedes an earlier one,

and each phenomenon deserves and requires its own model. The final reason

follows from both of the preceding ones: no PDP model qualitatively captures

all of the effects, because no model is intended be true and each phenomenon

may and indeed should be simulated separately from any other according to

the arguments of these PDP modellers (Seidenberg & Plaut, 2006).

Nevertheless, in light of these data, and some previous indications, we can

offer some idea how some of the patterns seen here might be accommodated

in models related to those seen in the PDP literature. In many respects, the

considerations mirror those of trade-offs between routes in dual-route mod-

els insofar as there are factors in PDP models that produce trade-offs between

item-specific processing and processing based on generalization across items.

For instance, the number of hidden units between orthographic and phono-

logical layers affects the extent of generalization: Lower numbers of hidden

units tend to require greater compression of the input information, producing

greater generalization, because having hidden units that read only one or a

few words cannot work when such units are scarce. Similarly, modulation of
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an input gain parameter can control item-based versus generalization-based

processing, with higher levels of input gain leading to more item-based pro-

cessing. By either mechanism, more item-based processing would be expected

to be associated with less benefits from generalization, slowing low-frequency

words and pseudowords, but giving relative benefits to inconsistent or irregu-

lar words. That is, one could naı̈vely predict the frequency and lexicality effects

would be positively correlated with each other and negatively correlated with

exception effects.

An alternative consideration is the amount of learning that has taken place.

First, as reading becomes more efficient, general speed should increase, re-

ducing all effects. Further, as we are considering relatively expert readers,

we would expect that the asymptote of learning is a consideration for the

more frequent words, so that at greater levels of learning frequency effects

should diminish, and more rapidly so than just the general speed effect. At

the same time, as learning at the orthographic level proceeds, spurious activity

for neighbors should be eliminated, reducing the potential for neighborhood

facilitation.

Some research on modeling nonword pronunciation with PDP models has

been offered as evidence that PDP models account for individual differences

(Zevin & Seidenberg, 2006). However, the individual differences in which pro-

nunciation was chosen for nonwords was caused in these models by minor

random variations in the training schedule. Whilst it is easy to see how such

variation could produce a bias in how novel stimuli are processed, it is in no

way clear that such variation should offer an appropriate account of systematic

shifts in response times to stimuli with particular characterstics, let alone how

such effects should correlate.

Indeed, as with the other models, this kind of verbal analysis can only offer

a set of possible considerations, which may be incomplete, and only some of

which may be relevant for the particular model structure and parameters se-

lected to fit each participant’s data. To assess such predictions would require

an appropriate PDP model in terms of both producing response times and cov-
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ering an adequate range of effects. To our knowledge, this would be a new

model (the model of Chang et al., 2012, might, for example, be extended to

produce response times rather than only error scores that may be presumed

to be monotonic in response time). We do not attempt any such PDP model

development here, and indeed proponents of the PDP approach, and indeed

well-known proponents of the PDP approach have argued that the develop-

ment of such a model would be undesirable (Seidenberg & Plaut, 2006); pro-

ponents of competing approaches view this as an argument for unfalsifiability

(Rastle & Coltheart, 2006).

6.5. Conclusion and future directions

We replicated the key theoretical phenomena of reading aloud, and demon-

strated that reliable individual differences are observed even after accounting

for differences in general speed. We then identified critical correlations among

these effects (within individual participants), and used these correlations as

criteria for testing computational models of reading aloud. After showing that

DRC and CDP+ capture some but not all of these correlations, we developed

and tested a model based on DRC, the DRC-FC, which did indeed yield more

accurate predictions of these correlations.

These data offer important new constraints on theories of visual word

recognition and highlight areas of potential improvement within DRC and

CDP+ accounts of word naming. Extending models to accommodate individ-

ual differences is an important future step to allow more complete theories

of reading to be more accurate and more applicable to real-world concerns

about reading and reading acquisition. Moreover, investigations of individual

differences in more naturalistic reading tasks similarly need to be extended

beyond the comparison of good and poor readers (e.g., Ashby et al., 2005),

informative as these may be. However, more than just accommodating these

differences, models must also offer an understanding of these individual

differences. Such an understanding would specify the processes — and

the parameters of these processes — that differ to underlie differences in
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the effects. Such an understanding would be augmented by linking these

parameters to other, more general, cognitive abilities. Such model-specific

steps would be premature without a model that can accommodate the effects.

We view the present data as one empirical step towards a more global model

of reading.
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Appendix A. Frequency stimuli

Stimuli used for estimating the frequency effect are presented in Table A.1.

Appendix B. Neighbourhood stimuli

Stimuli used for estimating the neighbourhood size effect are presented in

Table B.1.

Appendix C. Length stimuli

Stimuli used to estimate length effects and the lexicality effect are presented

in Table C.1.
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1 ppm 3 ppm 9 ppm 27 ppm 81 ppm

boo bug ban bay box
bash bout bike bomb base
brawl brink bride brick brown
dud din den dad die
dent dope dock damp desk
foal foil fork file film
gull gosh goat goal game
hoot hiss hint hide hell
chomp chunk cheer chain chair
cud kin cab kid cup
clove clown clash cloud clean
lurk lick lust link lack
mush moth mill mess milk
nigh knob nail knee note
pelt putt pond pack pain
rink rake ripe rope rock
seep sage suck song send
shank shoal shine sheet share
steed stunt stack storm stone
tab tar tub tin tax
teak toil tilt tent team

Table A.1: Stimuli used for estimating frequency effect

Appendix D. Adjusting for general speed

A core difficulty in assessing individual differences in response time effects

in terms of correlations is that a correlation will be induced if there is a general

speed coefficient that is a multiplier on the central processes; in many models

this is the slope for converting cycles into response times. Whilst in modelling

applications, this parameter can simply be included for every participant, for

a more qualitative understanding of correlations, removing such an effect is

desirable. Consider a numerical example. Suppose that the to-be-modelled

cognitive item-based task’s response times are affected by three (standardised,

orthogonal) variables of the items — A, B, and C — in a manner that is con-

sistent with a linear regression, and the residual noise process has an inde-

pendent, irrelevant, weight (in contemporary models of word naming, this is

true: only item mean RTs come from central parts of the model; RT variability
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low N high N

bird bell
buzz buck
beard *bitch
disc deed
dumb dole
dirt doll
dawn dare
foul fame
fact face
gulf gang
garb gush
growl graze
helm hilt
hurl hash
howl hack
high home
yak yam
cusp coop
keel cone
cube cork
cult cart
keen cake
kiss cave
coal cope
leave light
mesh mole
mere mile
romp rave
rich rate
surf sane
self seed
stump stale
void vest
veil vice
wisp wane
zinc zeal
loin loon
noun *nope
crypt creed
nil nap
loaf lest
loud lake

Table B.1: Stimuli used for estimating neighbourhood size effects. Pairs with an asterisked item
were not included in the analyses.
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Words Nonwords

3 4 5 3 4 5

bib bile budge bul beab beich
bin bunk bulge bym bibe bouse
beg barn boost bov bobe beash
bid bond bunch bes booc boarm
dig dull depth dyt deef dunch
dry drop drive dro dran drine
fun fill fault fud filk fodge
gut gale goose gol gise gunch
gun gate guess gaz goaf gudge
hag hoop hunch hin hean hulch
hug hawk haunt hab heek hetch
hut hang hence hol hont haise
cod cape curve kem coth cange
cap code coach kuc cose kaunt
cut cost court kav kive kutch
lob lobe lurch lec lenk lerge
lid lump lodge loy lilk lirge
leg loss lunch lig loog louch
mar meek munch moy marf medge
mob mode marsh mib meap mouch
mix myth mount mup moop metch
nip nape nudge nev noof nalve
net neat nurse nar nowl ninch
pun pert purge pag peef petch
peg pike punch pem perb pedge
pen pump pitch poy paim purpe
rib rout roost rus rull raint
rub rude ridge ruv roog rorse
sin sing solve suz soob sudge
tip tune toast tol telp tarch
web weep wedge wec wiln wouse

Table C.1: Stimuli used for estimating length and lexicality effects
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within items is treated as a purely statistical issue). Participant 1 has regression

coefficients 5, 15, and 5 respectively for these variables, and residual standard

deviation (s.d.) 25; Participant 2 has coefficients 10, 30, and 10, and s.d. 50;

Participant 3 has coefficients 10, 30, and 10, and s.d. 100; Participant 4 has co-

efficients 10, 10, 30, and s.d. 200; and Participant 5 has coefficients 5, 15, and

15, and s.d. 50. Adjusting for general speed means identifying Participants 1,

2 and 3 as examples of the same 1:3:1 (A:B:C) ratio pattern, Participant 4 as an

example of a different 1:1:3 pattern, and Participant 5 as different from all of

them, having a 1:3:3 pattern.

A common solution — and that used by Yap et al. (2012) — is to use stan-

dardised regression coefficients for regressions separately on each participant

(or at least per-participant z-scored RTs in separate analyses). If there were no

residual noise, that is, all variability in observed item means were due to item

properties, this would have the desired effect. However, if there is contami-

nation with noise that is not wholly proportional to overall speed (i.e. partici-

pants are not equally reliable) as in the example, then the strength of this noise

will affect the adjusted strength of the item variables. In the example, whilst

Participant 1 and 2 are correctly identified with the same set of strengths, Par-

ticipant 3 receives weaker corrected strengths for all the item variables, due to

the greater noise influence. It is true that more variance in the individual trials

is explained by those variables for the first two participants, but this is unlikely

to be theoretically relevant: Response time variability is not usually attributed

to the central cognitive process of interest, instead in whole or in part being at-

tributed to other processes, such as variability in response execution; certainly,

contemporary naming models give no account of within-participant, within-

item response time distributions. Perhaps more concerning is the comparison

of Participants 2 and 4. Standardising Participant 4’s highly variable response

times will give a much greater compression of the effects than occurs for Partic-

ipant 2; as a consequence, Participant 4’s standardised effect for C will be less

than Participant 2’s standardised effect for C, despite this variable accounting

for the majority of the systematic effect for Participant 4, and another variable
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(B) doing so for Participant 2.

Another (incomplete) solution might be to use something related to the ac-

tual ratio of the observed regression coefficients, such as weighting the coeffi-

cients so that they (or their squares) add to one. If all effects are known, then

this achieves the goal (up to the quality of the data). However, if the empiri-

cal regression lacks one or more variables then it does not produce the correct

pattern: In our example, suppose C is omitted, then (assuming the remaining

coefficients are perfectly estimated, for simplicity) whilst Participant 4 is cor-

rectly identified as different (1:1), the other four participants are all identified

as having a 1:3 (A:B) ratio pattern. That is, the relatively smaller influence of A

and B for Participant 5 is not detected.

These two possibilities combined isolate the problem: What is needed is a

reasonably good estimate of the residual standard deviation for a given partici-

pant that remains after accounting for all the variance caused by item variables.

The z-scoring approach uses the whole observed variance as the estimate of the

systematic variance, underestimating the residual variance as zero. The naı̈ve

ratio approach uses observed variance attributable to known variables as the

estimate of the systematic variance, overestimating the systematic variance by

including variance due to unknown variables as well as some noise variance.

Clearly, the true variance due to item variables — both known and unknown

together — is the same as the true variance due to items. If a participant has,

however, completed each item only once, directly estimating (by analysis of

variance of the data for an individual participant) the variance due to items ex-

hausts all the variance (because item and trial are aliased), including variance

due to noise; no correction is available because there is no independent esti-

mate of the noise. On the other hand, if, as here, participants read the words

more than once, the estimated item variance does not soak up all the noise

(only part of it); it is the item by session interaction that can not be separated

from the noise in this design. That is, the variance of the item means is less con-

taminated (as an estimate of variance due to items) with noise variance than the

variance of all the trials, but a further step can be taken: An unbiased variance
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Factor df Sums of squares Mean square (MS)

Session 2 99994 49997
Item 683 2402613 3518

Residual 1309 1478906 1130

Variance component for Item = (MS(Item) - MS(Residual))/(#Sessions)
= (3518-1130)/3 = 795.98

Divisor =
√

795.98 × 683/684
= 28.19 ms

Table D.1: Calculation of the estimate of the variance component associated with Item.

component estimate for the items can be calculated. This variance component

can be used instead of the total variance as the square of the denominator in a z-

score-like calculation; in the following, we do so using the (unbiased) ANOVA

estimate of the variance component for simplicity. If the assumption that the

noise process is scaled as part of the general speed is true, this method pro-

duces results equivalent to those produced by plain z-scoring (all adjusted RTs

are multiplied by the same constant); if it is not, then it does not allow differ-

ences in the noise process to affect the interpretation of the speed of the other

processes.

To make this concrete, Table D.1 shows the ANOVA table from which the

variance component was calculated for one participant.

The standard deviation estimated from the variance component for use in

standardisation for each participant had mean 54.3 ms and standard devia-

tion 14.7 ms; it correlated with the participants’ overall standard deviations

.661, with their mean RTs .522, and with the individual effects: frequency .473;

neighbourhood size .148; word length .264; nonword length .665; exception

(Jared) .380; Exception (Rastle & Coltheart) .581; consistency .388; position of

irregularity .384; and lexicality .616.
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Appendix E. Parameter ranges used in DRC and CDP+ simulations

Table E.1 presents the lowest and highest value used for each parameter

of the models. For parameters than can take only integer values, 21 equally

spaced values were used with equal probability; for other parameters, 51

equally spaced values were used with equal probability.
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Parameter DRC, CDP+ or DRC-FC? Min. Max.

Activation All 0.18 0.38
Frequency scaling DRC and CDP+ 0.02 0.6

Frequency weighting DRC-FC 12 360
Stopping criterion All 0.25 1

Resting criterion CDP+ 0.00001 0.00101
Feature-letter excitation All 0.001 0.02
Feature-letter inhibition All −0.25 −0.05

Letter-orthography excit. All 0.04 0.24
Letter-orthography inhib. All −0.8 −0.4

Letter-letter inhib. All 0 0.1
Letter decay All 0 0.2

Orthography-phonology excit. All 0.1 2.0
Orthography-letter excit. All 0.2 0.8
Orthography-letter inhib. All 0 .1

Orthography-orthography inhib. All −0.2 0
Orthography decay All 0 0.1

Phonology-phoneme excit. All 0.05 0.25
Phonology-phoneme inhib. All −0.4 0

Phonology-orthography excit. All 0.02 2
Phonology-phonology inhib. All −0.2 0

Phonology decay All 0 0.1
Phoneme-phonology excit. All 0 0.4
Phoneme-phonology inihb. All −0.2 −0.05

Phoneme-phoneme inhib. All −0.4 −0.05
Phoneme decay All −0.02 −0.01

Nonlexical route strength All 0.01 0.2
Nonlexical route threshold CDP+ 0.005 0.25

Temperature CDP+ 1.0 11.0
Learning rate CDP+ 0.005 0.2

Nonlexical route start DRC and DRC-FC 0 20
Nonlexical route step All 0 20

Phonics cycles CDP+ 0 200
Vocabulary cycles CDP+ 0 200

Table E.1: Parameters ranges used for DRC and CDP+ simulations.
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