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ABSTRACT

The effects of properties of words on their reading aloud response times (RTs) are one

major source of evidence about the reading process. The precision with which such RTs

could potentially be predicted by word properties is critical to evaluate our

understanding of reading, but is often underestimated due to contamination from

individual differences. We estimated this precision without such contamination

individually for 4 people who each read 2,820 words 50 times each. These estimates were

compared to the precision achieved by a 31-variable regression model that outperforms

current cognitive models on variance-explained criteria. Most (around two-thirds) of the

meaningful (non-first-phoneme, non-noise) word-level variance remained unexplained

by this model. Considerable empirical and theoretical-computational effort has been

expended on this area of psychology, but the high level of systematic variance remaining

unexplained suggests doubts regarding contemporary accounts of the details of the

mechanisms of reading at the level of the word. Future assessment of models can take

advantage of the availability of our precise participant-level database.
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The unexplained nature of reading

Reading is a core skill in modern everyday life. For this reason, it is among the

oldest and most developed topics of study in experimental psychology. Reading aloud is

one task that is commonly used to test theoretical ideas about how people read. Such

ideas are turned into computational models of reading aloud that predict response times

(RTs) on a word-by-word basis, such as the DRC (dual-route cascaded model; Coltheart,

Rastle, Perry, Langdon, & Ziegler, 2001) and CDP+ (connectionist dual-process plus

model; Perry, Ziegler, & Zorzi, 2007). Such models are designed to explain the effects of

properties of words — such as how long and how common they are — on reading.

Indeed, to legitimately claim to understand and explain the processes of reading, we

require not only effects, but explicit theoretical models of those effects.

One way to assess these models — and hence the corresponding explanations — is

to compare these models’ predictions with large data-sets containing observed RTs for

many words (known as mega-studies; e.g., Balota & Spieler, 1998; Balota et al., 2007;

Seidenberg & Waters, 1989; Spieler & Balota, 1997; Treiman, Mullennix, Bijeljac-Babic, &

Richmond-Welty, 1995). The natural way to examine such correspondence is to correlate

the observed and predicted RTs across words, and the correspondence is usually

summarized with the R2 statistic (over words)1.

However, a perfect correlation is not to be expected of any model, because there is

some variation between one occasion on which a person reads a word and a different

occasion on which they read the same word, typically treated as experimental noise by

averaging over these occasions. When a model does not make different predictions about

these different occasions, it will inevitably fall short of perfect prediction, even if it

correctly explains the differences associated with properties of the words. Therefore, to

interpret such correlations, we need to know how well a model could possibly predict the
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response time for any given word. That is, how large a discrepancy between observed

and predicted mean item RTs may be written off as due to noise?

Various techniques have been used to produce such estimates of the noise

contribution to the mean RT for each word. These techniques rely on examining the

variability between the different occasions on which a word has been read, but these

occasions involve different participants, not the same participant. So, the estimate of what

cannot be explained includes both variability that is due to different occasions and

variability that has to do with individual differences. Moreover, some of these individual

differences are systematically linked to the properties of words.

For instance, if the RT to BREAD is 400 ms with one participant, and 600 ms with

another participant, the 200 ms discrepancy could be due to any combination of (i) noise2,

(ii) an individual difference in average RT, or (iii) an individual difference in the effect of a

word-level variable (e.g., length). Analysis techniques that treat individual differences as

noise will necessarily overestimate the amount of noise contributing to the mean RT for

each word. This overestimation of noise results in an underestimation of the variability

that a model should explain, leading to an overestimation of the success of models.

If 10% of the variance in the data were due to noise, and 10% were due to

individual differences, then an analysis that treats individual differences as noise, would

only set a target of 80% variance explained for a model, when in fact 90% could in fact be

explained. We aim to estimate the percentage of variance that is due to effects of the

properties of words (i.e., not noise), even when these effects differ between participants.

By doing so, the present research establishes a more stringent and accurate target for the

evaluation of our understanding of reading (as instantiated by quantitative models).

Of course, if the available data do not have the same person reading each word

repeatedly, there is limited information available to distinguish the sources of variability

that are individual differences from those that are noise. By treating individual differences
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as noise, a lenient criterion is constructed, but this is both more desirable than a too-strict

criterion that rejects a correct model, and useful if it rejects incorrect models despite its

leniency. A model that correctly explains the various effects should have numerical

parameters that can be altered to accommodate individual differences in these effects.

Previous approaches to the calculation of R2 criteria have approached the difficulty0.1

2.1.1 of the conflation of individual differences and noise in different ways. All of these involve

simplifying assumptions that are summarized in Table 1, and explained below. Our

approach does not rely on any of these simplifying assumptions.

One approach (e.g., Seidenberg & Plaut, 1998; Sibley, Kello, & Seidenberg, 2009) has

been to use correlations between participants or groups of participants to estimate the

non-noise variance. This has the advantage that it does not assume that all relevant

effects are known and entered into the analysis. However, such analyses are based on

normal distributional assumptions, which are well-known to be incorrect for response

times. Moreover, this approach treats individual differences that can be characterized

with a difference in intercept and overall slope as non-noise, but other individual

differences — such as one participant being very length-sensitive whilst another being

very frequency-sensitive — as noise. Effectively, this approach makes a general speed

assumption that the only differences between participants are in intercept and slope.

Thus, participant-item interactions can only be due to these differences in general speed.

In addition, this method uses a data set to stand in for the correct model in estimating

how well a correct model will correlate with data. However, the difference between the

correct model and data that stands in for it is that the data will contain noise. In effect, the

incorrect assumption is made that model predictions contain noise.

More recently, a second version of this approach has been developed by Rey,

Courrieu, Schmidt-Weigand, and Jacobs (2009), which uses a Monte Carlo method: It

simulates several new subgroups of participants by randomly selecting participants from
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the actual data, from which correlation estimates for the full group can be calculated. By

using the Monte Carlo method, normal distributional assumptions are avoided. Even

more recently, an adjustment has been made to this method to account for the absence of

noise in model predictions (Courrieu, Brand-d’Abrescia, Peereman, Spieler, & Rey, 2011).

These are the only changes in assumptions that these developments of the method make.

Another common approach has been to define a set of effects for which models are

expected to account, and use as the target the R2 of a regression model with those

predictors. For instance, Spieler and Balota (1997) found that a 3-factor regression model

(log. frequency, orthographic N, length) outperformed contemporary computational

models (Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland,

1989) on this criterion. Also, Perry et al. (2007) compare their model favorably with this

criterion. However, a stricter criterion could be set with more predictors, were they

known (cf. Adelman & Brown, 2008a; Balota, Cortese, Sergent-Marshall, Spieler, & Yap,

2004), but it is likely some predictors will be unknown. Moreover, just because the

criterion is met, that does not mean that the model is successful in explaining the effects

of interest; it may be capturing other variance. To address this problem, Besner (1999) and

Adelman and Brown (2008a) suggest comparing the predicted and observed sizes of the

effects, but the method is still limited by the list of known effects. The method operates on

item means, and so refers only to the average of participants. Consequently, no particular

structure of individual differences is assumed — and in particular, not a structure based

on intercept and slope alone — except that the participant-item interactions must relate to

the known effects. Moreover, it also uses the normal distributional assumptions, which

are incorrect for response times. This method does, however, have the advantage that the

correlation is calculated on the basis that predictions from lexical variables do not contain

noise, producing a correct comparison with computational models.

To avoid the assumption that all relevant variables are known, and to explicitly
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include individual differences, one might wish to construct a linear mixed-effects

regression (lmer: cf. Baayen, Davidson, & Bates, 2008) to include adjustments (random

intercepts) for words and participants. The per-word adjustments allow for arbitrary

unknown effects. To account for individual differences not involving the intercept — such

as one participant being particularly sensitive to length — participant slope adjustments

(random slopes) of the lexical variables could be included. Whilst these allow for

participants differing in more than intercept and a single slope, the adjustments (which

are a form of participant-item interaction) are limited to known slopes (i.e., those

involving the known effects). The estimate of noise from this approach would be

calculated on the basis that predictions from lexical variables do not contain noise, so

would be useful for assessing computational models. Typically, such models use the

normal distributional assumptions.

The analogous ANOVA model has participants and words as factors. The lexical

variable effects would be constructed as contrasts within the main effect of word, and

these could interact with participants. The same problematic assumptions apply. In

particular, the per-participant item effects must be limited to the known effects. This is

because in data sets where there is just one observation per participant per item,

including arbitrary item effects on a per participant basis (i.e., the complete participant ×

word interaction) would exhaust all the variance in the data set, incorrectly leaving none

as noise. If we correctly wish to allow in our statistical model that individual differences0.1

2.1.2 may occur in the unknown effects, we must obtain multiple observations of each

participant-word combination. In such a data set the participant-word interaction is not

confounded with the trial-to-trial noise.

Additionally, estimating the average over individuals causes problems when

testing models because although the magnitude of particular effects may vary between

participants, using average data will never require models to account for the range of
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effect magnitudes shown, only the average magnitude. Moreover, averaging over

participants may be misleading as to the underlying functional form (shape) of some

effects (e.g., W. K. Estes, 1956; Heathcote, Brown, & Mewhort, 2002). Therefore, to the

extent that models are distinguished by their predictions of functional form of effects,

such as the frequency effect (e.g., Adelman & Brown, 2008b), average data are insufficient.

On both counts, if possible, it is therefore preferable to analyze participants separately.

However, no existing database has sufficient data to support such individual analysis of

participants.

With sufficient data from each participant, with replications of each

participant-word combination, we can avoid the aforementioned problematic statistical

assumptions, and analyze each participant individually. This allows us to construct a

statistical model that can accomodate effects that are not known in advance. Moreover, by

analysing them separately, participants may differ arbitrarily, not only in intercept and

slope. It is particularly important that we can examine the effect of word and its

interaction with participant without restriction to the known effects. By using a Monte

Carlo technique appropriately, we can also avoid assuming model predictions have noise

and allow that RTs are not normally distributed.

Thus, the present work seeks to address the aforementioned fundamental problems

in assessing models (see Table 1) by reporting a mega-study on four individuals who read

2820 words, 50 times each. By way of comparison, Spieler and Balota (1997)’s 30

participants read each of these words once; and Elexicon’s naming data (Balota et al.,

2007) contain 25 observations for each of 40,481 words, spread over 444 participants (who

read 2530 or 2531 words each). Notably, neither of these older data sets contains the

participant-word repetitions that are necessary to accurately test models of reading aloud.

The present study is also the first mega-study to have hand-coding of response times,

which is more accurate than the typical voice-key coding (at least, when voice keys are
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being assessed, hand coding is used as the benchmark for correctness, e.g., Rastle &

Davis, 2002). On both the grounds of the precision of individual measurement and the

accuracy of coding, these data can be seen as key for the future assessment of cognitive

models of visual word recognition. The full database is available to other researchers via

website (URL to be confirmed).

We use these data to (i) demonstrate the differences between individuals; (ii)

estimate the proportion of variance in individuals’ item mean RTs that is in principle

explicable (not noise); and (iii) attempt to explain this variance with existing and new

factors. We emphasize the variance in item mean RTs (rather than the total variance in

individual trials) because this accords with other uses of mega-study data, and because

item-property effects have been the pre-eminent source of information about the

processes of visual word recognition.

METHOD

Participants

Participants were recruited by an e-mail advertisement to the staff, faculty and

postgraduates of the Department of Psychology at the University of Warwick.

D was a 27–28-year-old British postdoctoral researcher in Psychology at the time of

the study. He is right-handed (scoring +20 on the Waterloo handedness questionnaire),

and had approximately normal vision (0.04 logMAR in the left eye, 0.14 in the right). He0.7

2.5 scored 23/80 (corrected for guessing; 1.7 SDs above mean in original sample) on the UK

author recognition test (Masterson & Hayes, in press), and his verbal IQ according to the

Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999, WASI;) was 127 (superior).

A was a 31–32-year-old American medical student at the time of the study. He is

right-handed (+28) and had vision corrected to normal (0.04, -0.04) by contact lenses or

glasses. He scored 13/50 (corrected; .6 SDs above mean in original sample) on the
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original US author recognition test (Stanovich & West, 1989), and his WASI verbal IQ was

measured as 108 (average).

M was a 24–25-year-old British research assistant and doctoral student in

Psychology at the time of the study. He is right-handed (+32) and had vision corrected to

approximately normal (0.02, 0.12) by glasses. He scored 4/80 (corrected; .7 SDs below

mean) on the UK author recognition test, and his WASI verbal IQ was measured as 128

(superior).

U was a 53-year-old British personal assistant employed in the Psychology

department at the time of the study. She is right-handed (+22) and had vision corrected to

approximately normal (0.06, 0.14) by glasses. She scored 10/80 (corrected; .1 SDs above

mean) on the UK author recognition test, and her WASI verbal IQ was measured as 121

(superior).

Each received £1000 (ca. US$1700) for participation.

Apparatus

The experiment was controlled by custom software on computer. Stimuli were

presented on a Sony CPD-G200 17” display at 1024× 768 pixels. A Plantronics Audio 370

gaming headset with microphone was attached to an Ensoniq 5880 AudioPCI sound card

for recording responses.

Design

For each participant, 50 lists were created that each contained a new random

ordering of the 2820 monosyllabic words from Spieler and Balota’s (1997) study. Each list

was split into two halves for presentation on consecutive sessions of word naming to

obtain response times.
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Procedure

At the beginning of each of the 100 1-hour sessions, participants tested the audio

equipment by reading aloud the word ‘testing’ into the microphone, which was recorded

and then played back over the headphones. Once they were confident the equipment was

operating correctly, they pressed the space bar on the computer keyboard to proceed. The

first trial window began after a delay of a second.

Each trial was allocated a window of 2300 ms. The onset of the stimulus was

jittered to be 100–300 ms (uniformly distributed) after the nominal beginning of the trial.

The word was then presented in black-on-white 24-point lower-case Courier font in the

center of the screen for 1500ms, and the participant’s vocal response recorded for this

period. No feedback was given. The interval from stimulus offset to next stimulus onset

therefore varied between 600 and 1000 ms.

Participants were permitted breaks on demand. Pressing the space bar instigated a

pause in the experiment at the end of the trial window indicated by the display of a blank

black screen; the next trial window began one second after the next press of the space bar.

If a long delay was needed, participants could press the ‘Q’ key to exit the experiment; if

so, the remainder of the session began with the testing procedure when they re-entered

the experiment. Each session was completed on the same day it was started3 and

participants completed at most one session per day.

Data coding

Response times and errors were coded by visual and auditory inspection of the

waveform, with the assistance of a version of the open-source Audacity software package

modified for the purpose by the first author. With the exception of the first session,

software provided an estimated response time based on a two-stage voice key applied to

a filtered version of the sound wave, which was corrected if necessary by the human
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coder. The third author coded the data from the first 20 sessions for each participant, the

second author the remainder.

Given the use of two data coders, the second author additionally coded the first

session to evaluate inter-rater reliability. RTs for valid correct trials provided by the two

raters correlated r = .991 overall, and within each participant r = .976, .995, .990, and .993

for D, A, M, and U, respectively. Given that D’s sound waves were subjectively not more

difficult to code than the other participants’, we attribute the slightly weaker correlation

to practice, as his first session was the first coded by both coders.

RESULTS

Of the 564,000 trials, 25,110 (4.45%) were either incorrect or unusable. These are

broken down by participant and type in Table 2. Ignoring trials removed for reasons

other then error (e.g., stutters, equipment failures), A exhibited a greater proportion of

errors than the other participants; this was also true of other language tasks not reported

here. As a proportion of the errors made, D showed a relatively high rate of visual errors;

this is difficult to interpret: In a tachistoscopic word identification task, D’s performance

was similar to U’s (although D is much more practised at the task). Summary statistics for

the mean correct valid RTs for each participant are given in Table 2.

The general speed assumption is wrong

The present study was motivated by our supposition that individual differences

between participants would invalidate approaches that treat participants as replications

of one another, in the sense that a single common underlying difficulty factor is

responsible for the differences between items in RTs for all participants. Whilst there are

clear overall differences in participants’ RTs, such approaches can adapt to differences in

general speed. We therefore first compared the participants using a simple regression
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model to examine individual differences in effect magnitude, with some of the most

important variables in word naming, as follows:

First phoneme. First phoneme was dummy-coded with 38 levels from the CELEX

transcription.

Exception costs. An exception cost is defined as the effect of having a pronunciation

that breaks spelling-sound rules (being an exception word not a regular word); for0.9

present purposes, spelling-sound rules were taken from the DRC (Coltheart et al., 2001),

and an exception was identified if these rules produced a pronunciation that differed

from that in the model’s vocabulary. Exception costs were calculated separately for each

of the first three letter positions (the earliest irregular position, if more than one) because

costs are greater if the exception comes about early in the word (the position of

irregularity effect, e.g., Rastle & Coltheart, 1999). For instance, PINT is exceptional in

second position (I) where the regular pronunciation would be as in HINT.

Orthographic and phonographic neighborhood sizes. Orthographic neighbors are words

formed by replacing a single letter. Phonological neighbors are words formed by

replacing a single phoneme. Phonographic neighbors are words that are simultaneously

orthographic and phonological neighbors (Adelman & Brown, 2007; Peereman &

Content, 1997). For instance, STOKE and SPOKE are phonographic neighbors, but STOKE

and STORE are only orthographic neighbors without being phonological neighbors (and

hence are not phonographic neighbors). Neighborhood size (N) is the count of number of

neighbors of a specific type. Phonographic N is reported, and orthographic N is reported

as the number of orthographic neighbors that are not phonographic neighbors, so that

each neighbor contributes to only one coefficient.

Frequency. The natural logarithm of the written frequency from CELEX (plus one, as

usual, to avoid taking the logarithm of zero, e.g., Balota et al., 2004) was also used.
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Separate slopes were fitted for exception and regular words to code the frequency ×

regularity interaction (e.g., Seidenberg, Waters, Barnes, & Tanenhaus, 1984).

Orthographic length. Number of letters was entered with separate slopes for

exception and regular words, coding the interaction observed in Spieler and Balota’s

(1997) data by Adelman (2005).

The regression coefficients (except for first phoneme) are illustrated in Figure 1, and

interaction tests for the difference between these data and Spieler and Balota’s (1997), and

for the difference among our four participants are given in Table 3. Our participants

showed significantly stronger frequency effects, weaker length effects and stronger

position 2 exception effects compared to Spieler and Balota’s, as well as showing

inhibitory neighborhood effects instead of facilitatory ones.

Turning to look at individual participants, D and U show similar patterns to one

another and the SB97 data, except for neighborhood effects. In general, A shows stronger

effects than the other participants. Whilst M’s exception costs are similar to the other

participants’, he does not show inhibition from length, and his frequency effects are

weaker.

Neighborhood effects are typically facilitatory in naming (Adelman & Brown, 2007;

Andrews, 1989, 1992; Balota et al., 2004), so it is surprising that they are absent and

inhibitory in these data. This may result from either the conditions of the experiment

(e.g., the trials are not self-paced, or the long-term nature of the experiment) or properties

of the participants (i.e., individual differences4). Otherwise, the results appear typical.

Concentrating on this set of well-known effects, however, biases us towards finding

the similarities between individuals: These effects are well-known because they were

demonstrated in group studies of word naming. Such studies are not usually published if

the by-subjects statistic (t1 or F1) is not significant, which is more likely if individuals
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differ in the size of the effect, because these statistics weigh the average size of the effect

against such variability. A more direct way to examine the similarity of participants is the

correlation between their item mean response times. The raw correlations are presented

in Table 4(a), alongside some previous mega-studies.1.3

First, we note that two of our four participants show negative correlations with

SB97 and the other previous mega-studies, despite the strong qualitative similarities in

most of the standard effects given in Figure 1. Examination of the same calculations using

the residuals after first phoneme given in Table 4(b) — as this main effect is not usually

considered to be caused by the reading process of interest — reveals that the first

phoneme is the source of the serious inconsistency. This may reflect the different

measurement method for response times (hand coding vs. voice key) used in the two

studies, or it may reflect differences in the articulatory influences on response times

between our participants and the average participant. Of our participants, A is clearly the

most similar to the average undergraduate from the past studies.

Even so, the correlations between participants were moderate, but far from perfect.

Of course, the imperfect correlations that are exhibited consist of both the actual

underlying differences between participants, and the variation in each participant’s

response to each word. The structure of the present data set, with 50 replications of each

word for each participant, allows us to calculate the split-half (sessions 1, 2, 5, 6, . . . vs.

sessions 3, 4, 7, 8, . . .) reliability and thereby estimate the reliability of each person’s data

with the Spearman-Brown correction. These reliability estimates were D: .869, A: .823, M:

.681, U: .861 for the raw values, and D: .623, A: .816, M: .245, U: .492 for the residuals after

first phoneme; overall, these were generally good.

Given these estimates of reliability and the observed correlations, we can estimate

the underlying correlation (adjusting for the fact that observed correlations correlate both

the signal and the noise — attenuation — due to imperfect reliability) using the standard
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method from classical test theory. For the raw values, these were D vs A: .657, D vs M:

.563, D vs U: .614, A vs M: .577, A vs U: .708, M vs U: .743. For the residuals after first

phoneme, these were: D vs A: .488, D vs M: .599, D vs U: .708, A vs M: .797, A vs U: .612,

M vs U: .772. Whilst these values are large, they are far from 1, suggesting that substantial

individual differences exist.

We further tested the correlations in Table 4(a) with the reliabilities above using

Kristof’s (1973) method5 to see whether participant differences could be accounted for by

noise plus a linear relationship (i.e., the intercept and a single overall slope). As might be

expected from the low disattenuated correlations, such a relationship was heavily

violated for every pair of participants (all t > 14, p < .0001). When the same procedure

was applied to the correlations and reliabilities calculated from the residuals after first

phoneme in Table 4(b), four of the six pairs showed a strong violation (those showing the

lower disattenuated correlations; t > 3.5, p < .001), and the other two did not (t < 0; only

positive values give evidence to reject a null hypothesis.). That is, participant differences

could not be accounted for by noise plus a linear relationship, as the models used in

many analyses assume.

Overall, these analyses show that there are stable individual differences between

participants that go beyond general speed in terms of a different average or a simple

multiplier (which might correspond to a different cycles-to-milliseconds conversion in a

simulated model). Whilst it would be possible to perform analyses on these data that do

not assume a general speed relationship between participants, and thus calculate better

targets to apply to the average data, this would still underestimate the strength of

constraint that these data can place on models. Given that the item average data from

each of the individual participants are reasonably reliable, we could in principle ask how

well a model fares in explaining the systematic properties of the item data of each

participant. This would require that a model is adjusted to the particular data set in some
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way to account for the maximum possible variance, as is true of any attempt to rule out

models using R2 targets (Adelman & Brown, 2008a). The comparison of course also

requires that we have an appropriate estimate of how much of the variance in the item

means is systematically due to item properties (as averaging reduces but does not

eliminate noise and other irrelevant influences).

How much variance would a correct model explain?

We therefore now turn to our main question: If a model gave the correct mean RT

for each word for each participant, how much of the observed variance in item mean RT

would that model explain (i.e., how high would its R2 be) for each participant? This will

not be 100% because there is trial-to-trial noise in the data. Put otherwise, the question is

how much misprediction by a model should we tolerate as due to noise? The answer to

this question is critical for evaluating models of reading.

To avoid the assumptions of equality of variance and normal distributions for each

participant-word combination, we used Monte Carlo simulations where each simulated

RT is drawn from the observed RTs (adjusted for the main effect of session) for that

participant-word combination (replicated 1001 times). Such a Monte Carlo bootstrap

procedure assumes that the observed distribution is a good approximation to the true

distribution. We then examined how well a sample of the size of our data set would be

captured by a perfect model that predicted the true underlying participant-word mean

RTs. This was done in terms of the error sum-of-squares, because its distribution (unlike

the correlation coefficient’s or R2’s) does not depend on the quality of our estimate of the

true values of the underlying mean RTs (which property is known as being a pivotal

statistic). For ease of comparison, we then used the (fixed) total sum-of-squares estimate

to compute R2 distributions for each participant giving the expected R2 of a correct

model.6 Table 5 presents these target values (in the second row) and presents them
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alongside a baseline measure (in the first row) of the variance explained by the first

phoneme (as previously described). Whilst first phoneme is often the most important

predictor, it is usually only treated as a control variable (rather than a variable of interest)

because it is presumed to reflect articulatory-mechanical (and possibly

voice-key-acoustic) speech factors that are not related to the reading process of interest.

We consider only the explicable variance after the main effect of first phoneme to

unambiguously be of interest for the computational modeling of item-level variance in

word recognition, so this amount-above-baseline measure is also presented in the table.

How does our present knowledge fare?

The data that we collected produce highly reliable item means, and therefore it

should be possible to explain these using the properties of the words. As the targets in the

second row of Table 5 indicate, up to ca. 90% (depending on the participant) in each

participant’s data would be explained by a model correctly generating the mean for each

word for each participant, because we have averaged over the noise (and sequential

effects) at the trial-to-trial level, although much of this is due to first phoneme. We ask

here whether the factors that we already know affect visual word recognition account for

this variance.

The early criticisms of computational models’ abilities to account for item-level

variance from Spieler and Balota (1997) made use of a three-variable regression (log.

frequency, length, orthographic N) that has been used as a standard target by some

modelers. For instance, Perry et al. (2007) give their CDP+ model a check mark as

successful on an item-variance criterion because it performs similarly in R2 to such a

regression. Table 5 includes the R2 values for such a regression (after first phoneme). The

results show that these three variables account for rather little of the variance in the data,

even when the proportion is rescaled to exclude first phoneme and noise variance: Less
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than one-sixth of the variance we would hope to be explained is due to these three

variables. As such, these data show this to be a very weak test of a model’s ability to

account for item-level variance.

The weakness of this criterion can be seen as not particularly surprising because a

wider range of variables is known to affect word recognition and we have previously

used such a wider range for assessing models. In particular, Adelman and Brown (2008a)

used a regression model for Spieler and Balota’s (1997) mean item response times which

included 17 orthographic and phonological variables and interactions to assess the

performance of the dual-route cascaded (DRC) model (Coltheart et al., 2001), which is

among the most influential models of visual word recognition. This regression model

serves as a useful benchmark because it can explain 98.21% of the variance in DRC

predictions; that is, essentially every variable important to the DRC is included. These

variables are:

First phoneme. As previously described.

Exception costs. Exception costs were used as previously defined, but separate costs

were estimated for each of five positions, crossed with two types of irregularity, those

affecting one-letter graphemes and those affecting two-letter graphemes (see Andrews,

Woollams, & Bond, 2005). In addition, for the latter case an extra cost was estimated for

the case where more than one phoneme was irregular.

Whammy costs. A whammy is defined as a spelling that follows spelling-sound rules

in a way that changes as read left-to-right (Rastle & Coltheart, 1999). For instance, CASH

has a whammy in third position because adding the H to CAS changes the pronunciation

of the third phoneme (rather than adding a fourth phoneme). Costs were estimated for

each of five positions in which whammies occurred.
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Frequency. We used polynomial terms up to cubic in log. CELEX frequency.

Separate coefficients were again used for exception and regular words.

Orthographic and phonemic length. Number of letters and number of phonemes were

both included with separate slopes for exception and regular words.

Orthographic, phonological and phonographic neighborhood sizes. All three

neighborhood sizes were included.

Feedforward rime consistency ratio. The feedforward rime consistency ratio is defined

as the ratio of number of friends to (number of friends plus number of enemies), where

friends are words that are spelled as though they rhyme and do, and enemies are words

that are spelled as though they rhyme but do not. For instance, FORK is a friend of PORK,

but WORK is an enemy to both. We use both the type ratio, where each word counts once

regardless of its frequency, and the log. tokens ratio where each word is weighted by the

log. of its frequency.

Interactions with frequency. Multiplicative interactions of the frequency terms with

phonographic N, and with type feedforward rime consistency ratio were included.

We used this regression for the present data. The results for the additional effects in2.3

this regression (i.e., those not illustrated in Figure 1 and discussed above), were as

follows: The cost of a second irregularity was significant for D, A and U, but not present

for M. A whammy in position one was inhibitory for all participants; a whammy in

position two was inhibitory for A; in constrast, later whammies tended to be facilitatory,

significantly so for positions three, four and five for D, four for M, and three for U.

Phonological length was facilitatory; this was significant only for exceptions for D, A and

U, but for both regulars and exceptions for M. In addition, the phonological length effect

removed the surprising facilitation from orthographic length for M (making it null).
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D showed no consistency effects. A showed a facilitatory consistency effect by the

types measure (only if it was entered alone, but the log-tokens measure was not

significant alone) and no interaction with frequency. M showed a facilitatory consistency

effect by either measure (but neither explained unique variance) and no interaction with

frequency. U showed a facilitatory consistency effect by either measure (but only the

tokens measure explained unique variance), and an interaction with frequency, such that

facilitation was greater for low frequency words.

The R2 values for these regressions are given in Table 5. Whilst these variables

make some progress towards the target, these values are well shy of explaining all the

variance that can be attributed to word properties: The overall R2 values are 17–44% short

of the target, which amounts to 69–76% of the variance due to neither first phoneme nor

noise remaining unexplained.

What have we missed?

Given the disappointing level of variance for which the variables in our regression

equation could account, we sought to identify further relevant measures.

Accessibility measures. We examined whether another accessibility measure could

improve the regression model’s R2, using five additional corpora from which both word

frequency and contextual diversity (the number of contexts/documents in which a word

appears: Adelman, Brown, & Quesada, 2006) counts were available or calculable. We

replaced the polynomial (cubic) regression in log WF in Adelman and Brown’s (2008a)

regression equation with restricted cubic splines with four knots7 (at {.05, .35, .65, .95}

quantiles) in log. WF or log. CD (1 was added before the logarithm was taken), improving

the reflection of the data particularly in the tails (which is the usual reason to prefer cubic

splines). The resulting R2 values with each corpus count for each participant are

presented in Table 6. M and U had shown the weaker frequency effects, and there was no
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evidence here that this was due to the frequency count being suboptimal: The count

originally used accounts for the most variance. By contrast, the effects for D and A may

have been underestimated, as the CELEX count performs relatively poorly in explaining

their RTs, with TASA CD being best for D, and SUBTL WF best for A.

Vowel length. Examination of the most under- and over-predicted RTs in U’s data

suggested that those that were slower than expected tended to have longer vowels (e.g.,

LOSE, CHIEF and CEASE), whilst those that were quicker than expected tended to have

shorter vowels (e.g., HIS, SOOT and DRAG). We categorized the vowel in each word as

short, long or diphthongal according to CELEX. Adding this factor only modestly

improved the variance accounted for by D: 0.06%, A: 0.63%, M: 0.02%, and U: 0.08% (ns

for M). Moreover, the ordering of the types differed between participants.

Visual confusability. Examination of the words with slower than expected responses

in D’s data suggested many came from words that had orthographic neighbors formed by

replacing an h with a b or vice versa. Given that many of D’s erroneous responses were

substititions involving this letter pair, the effect appears to be due to visual confusion. To

quantify this effect we used the confusion probabilities (at distance) observed by Bouma

(1971) to calculate a notional probability (product of the probability of the individual

confusions) of confusing the word with its nearest neighbor (the word with the highest

confusion probability). Words with high probability confusion neighbors were read more

slowly by D (increase in R2 of 0.14%) and U (0.09%), but not A (0.00%) and M (0.02%). We

also calculated the notional probability of correctly identifying all the letters in the word.

Words whose letters were not confusable were read faster by D (0.29%) and M (0.09%),

but more slowly by A (0.12%), with no effect (0.02%) on U. This is consistent with the

neighborhood effects: A relies on generalization from neighbors to aid naming, whilst the

others discriminate the word precisely, in line with the lexical quality hypothesis (e.g.,
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Andrews, 2008).

Other neighborhood variables (OLD20 & PLD20). We also calculated Orthographic

Levenshtein Distance 20-nearest (OLD20; Yarkoni, Balota, & Yap, 2008) and the analogous

phonological measure (PLD20) from CELEX. These newer neighborhood measures are

based on the average Levenshtein distance of the 20 nearest neighbors; compared to the

traditional neighborhood size, these measures take into account more types of neighbors

(as they permit deletions and insertions) and more distant neighbors (not only the very

nearest). OLD20 and PLD20 together accounted for an additional D: 0.47%, A: 0.09%, M:

0.03%, U: 0.16% of the variance, which was significant for D and U such that more

isolated words were read more quickly. Again, this is contrary to the usual effect of

neighborhoods.

Feedback and onset consistency measures. In addition to the feedforward (sound

implied by spelling) rime consistency that is most heavily relied upon, we also examined

feedback (spelling implied by sound) measures, and those based on the onsets of words,

following Balota et al. (2004) in using the log. tokens measure for this purpose. The three

additional measures further increased the R2 by D: 0.52%, A: 0.18%, M: 0.07%, U: 0.41%.

In terms of the individual coefficients, feedfoward onset consistency was facilitatory for

all participants, feedback onset consistency was significant for U only (in the facilitatory

direction) and feedback rime consistency was not significant for any participant.

Imageability. Semantics is an underrepresented domain both in models of visual

word recognition and among variables suitable for regression analyses. For most

semantic variables, relevant values are not available for the majority of words in the

present study; this means they cannot sensibly be used for overall R2 assessments for the

present data. The imageability norms of Cortese and Fugett (2004) are an exception, with

only 206 words missing (for which we used the mean). The imageability effect was
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significant only for A (0.15% of the variance).

Number of semantic features. Pexman, Lupker, and Hino (2002) found evidence that

number of semantic features affected response times in naming and lexical decision such

that words with more features were read faster. However, in the present data, using

Harm’s (2002) feature lists (derived from WordNet: Miller, 1995), D and U showed a

significant effect in the opposite direction: Words with fewer features were given

responses sooner (D: 0.19%, A: 0.00%, M: 0.05%, U: 0.09%). To investigate whether this

discrepancy was due to the response time data differing or the feature norms differing,

we conducted the analogous analysis with the SB97 response time data and these feature

counts (and CELEX frequencies). These data also showed the inhibitory effect of number

of features. Moreover, the zero-order correlations of RT and number of features was

positive for each of our participants. Given Pexman et al. used results of a feature listing

task to count features, it seems likely that the discrepant results here reflect the salience or

accessibility of features (over and above the number of features) being important in their

counts and for naming RTs.

Familiarity and Age of Acquisition. Familiarity and Age of Acquisition variables have

been offered as alternatives or additions to the more objective corpus-based measures of

experience of language. First, we entered familiarity from Balota, Pilotti, and Cortese’s

(2001) norms, which accounted for some significant additional variance (D: 0.42%; A:

0.22%; M: 0.07%; U: 0.16%). Then we added age of acquisition from Cortese and Khanna’s

(2008) norms, which accounted for no additional variance (the only value numerically

above zero being U: 0.02%). Age of acquisition did have a significant inhibitory effect for0.2

2.2 three participants if entered into the regression before familiarity (D: 0.12%; A: 0.14%; M:

0.01%; U: 0.14%).
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Emotion-related variables: Arousal and valence. We collected arousal and valence

ratings as described in Appendix A. More arousing words were read more quickly (D:

0.09%; A: 0.03%; M: 0.00%; U: 0.04%) , this effect being significant only for D. In line with

our previous findings (Z. Estes & Adelman, 2008a, 2008b), we used a binary split of

valence at the midpoint of the scale. An effect such that negative words were read more

quickly was significant for D (0.06%) and U (0.07%), which was an effect in the opposite

direction to previous research (the same pattern was weaker with the raw valence scores),

whilst no significant effect was shown by A or M.

First phoneme plosivity interaction with second position exception cost. To achieve the0.4

release of acoustic energy of a plosive first phoneme, the second phoneme must also be

executed. On the hypothesis that the first phoneme is executed as soon as possible, the

response time is determined by the resolution of the first phoneme if it is not plosive, but

by the resolution of the second phoneme if the first phoneme is plosive. As such any cost

of second position exceptions should be exacerbated when the first phoneme is plosive:

that is, there should be an interaction between whether the first phoneme is plosive and

whether the position of irregularity is second, and this pattern has been observed

(Cortese, 1998; Kawamoto, Kello, Jones, & Bame, 1998). This pattern was also present for

D (0.08%), A (0.14%), and M (0.12%), but not U (0.00%) in our data.

Summary of influence of additional factors

As the values for this final model in Table 5 show, these extra variables went some

way to explain the remaining explicable variance in the mean item RTs for each

participant. Although these improvements were rather small (a total of less than 4%) in

terms of overall R2, of the relevant (i.e., non-noise, non-first-phoneme) variance, together

these variables explained up to an extra 11% (for D). Nevertheless, of this relevant

variance, 65–70% remained unexplained after all 31 variables.
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Which are the most important factors?

First phoneme by far and away predicted the most variance of a single factor in0.4

1.2.1 each of the participants’ data, as it has done in previous mega-studies of naming but not

lexical decision (e.g., Balota et al., 2004; Ferrand et al., 2011). Adding variance after first

phoneme, accessibility (best choice of WF or CD, cubic splines) contributed the most for

D (first phoneme plus accessibilty: 58.70%), A (57.05%), and U (62.97%). For M, the single

factor that (after first phoneme) increased variance accounted for most was PLD20 (first

phoneme plus PLD20: 56.69%). However, for both M and U, if whammies and

irregularities were combined to form a single position of spelling-sound abnormality

variable (with six levels), this accounted for slightly more variance (M: 56.77%; U:

63.33%).

The effects of practice

Analogously to the problem we described with individual differences in the older

mega-studies, we can only examine the variation in effects with practice (or indeed, any

session-to-session change) for those effects that are known; for the intercept and the nine

variables of our simpler regression model (from Figure 1), the variation over session is

illustrated in Figure 2. There is very little evidence that practice increased the efficiency of

word processing in the mean RTs, and the practice trends in the individual effects —

mostly involving a slight weakening of the effects — are quite small relative to the

variability. Weakening of the effects might be a form of response time homogenization (cf.0.5

3.2 Taylor & Lupker, 2001): That is, as participants bceome familiar with the structure of the

stimulus set, their decision rule incorporates an expectation of the ideal RT; as the

influence of this ideal becomes greater, RTs become more similar and item effects become

smaller. There is some suggestion in the data that the inhibitory neighborhood effects are

due to practice, possibly reflecting an adjustment to the precise visual properties of the
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experimental display. That it is due to practice does not diminish the implied requirement

on models that the possibility of an inhibitory neighborhood size effect be explained.

Similar changes appeared in first phoneme effects over the duration of the experiment;

these are illustrated in the Supplementary Materials.

Such practice effects are interactions between a word property and a session, and so

the calculation of mean item RTs averages over such effects, meaning that they cannot

directly contribute to the R2 estimates for mean item RTs. Whilst these practice effects are

theoretically important and will account for variance at the trial level, they are not

relevant to assessing models at the item level.

Computational Models

Finally, we calculated R2 values for four computational models, the DRC (Coltheart3.1

et al., 2001), CDP+ (Perry et al., 2007), and Plaut et al.’s (1996) Simulations 1 and 48 (using

cycles — a time-taken measure — for DRC and CDP+, but error scores for Plaut et al.’s

models; all simulated with their standard parameters) which are shown in Table 5. These

are similar to the values for the 3-variable regression model, and worse than those for the

17- and 31-variable regression models.

DISCUSSION

We collected data that offer the most precise assessment of reading aloud at the

level of the individual, and hence the most stringent benchmark for modeling of reading.

The structure of our data — with repetitions of each word for each participant — allowed

us to perform analyses without problematic assumptions about individual differences

(see Table 1). Removing these problematic assumptions made our estimate of the noise in

the data more accurate than was previously possible. This more accurate noise estimate

sets an accurate target R2 for models to achieve. Using our regressions, we were able to
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explain between 56 and 69% of the variance in item means for each of our participants.

Much of this explained variance was due to first phoneme — a factor usually only treated

as a control variable — and some of the unexplained variance could (in the context of

item means) be considered inexplicable noise. Of the variance due to neither noise nor

first phoneme, our 31-variable regressions accounted for between 30 and 35%.

This was better than the R2 achieved by DRC, CDP+ and PDP models (2–11% of

this non-noise, non-first-phoneme variance), though in principle these models might be

improved by adjustments to indiviudal differences in the parameters (Adelman,

Sabatos-DeVito, Marquis, & Estes, 2011). In fact, they performed similarly to a

three-variable (log. frequency, length, neighborhood size) regression model that has often

been used as a model comparison. However, this three-variable regression obtained only

7–16% of the variance that could not be attributed to first phoneme or noise, suggesting

this is a very weak target for cognitive modeling endeavors.

Idiosyncracies and individual differences

Analyzing individual participants will reveal their idiosyncracies, and so typical0.7

2.2

2.5

patterns of performance will often not emerge. The well above average reading or reading

experience of three of our participants (D, M, and U) appears to be the source of one set of

differences from average performance; in contrast, A was more similar to the typical

undergraduate participant. These three participants showed both atypical (inhibitory)

neighbourhood effects (both in terms of N and the OLD20 and PLD20 measures) and no

imageability effect. We have observed an association between vocabulary and

neighbourhood size effects in naming (Adelman, Sabatos-DeVito, & Marquis, in prep.),

and there is also an association between reading skill and imageability effects (e.g., Strain

& Herdman, 1999). In effect, better readers are more able to rely upon precise formal

identification of individual words (i.e., lexical quality, e.g., Andrews & Hersch, 2010;
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Perfetti, 1992), which might explain why our three participants showed atypical effects.

One participant (M) showed further idiosyncracies. He showed a relatively weak

sensitivity to frequency, and he did not show inhibition from orthographic length. In our

initial analyses, his orthographic length effect appeared to be facilitatory. However, this

was in fact attributable to phonological length when this variable was added to the

regression. That is, he showed a facilitatory phonological length effect. Such an effect was

also present after the orthographic length effect was partialled in Spieler and Balota’s

(1997) data (Adelman & Brown, 2008a) and at least for exception words for D, A, and U.

That is, there are countermanding influences of orthographic and phonological length,

which have probably contributed to the difficulty of finding unique variance from length

effects for words in smaller studies (cf. Weekes, 1997). The orthographic influence may be

letter-by-letter processing in at least one route (as in the DRC and CDP+), or it may be

some other form of limited capacity processing, such as visual competition (simple

division of processing resources over letters, e.g., Adelman, 2011) or a limited accuracy in

the coding of longer visual sequences (Chang, Furber, & Welbourne, 2012). The

phonological influence might relate to reduced competition in lexical selection at a

phonological level for longer words, less overlapping representations at a phonological

level for longer words, or — given the relationship between orthographic and

phonological length — this may reflect some aspect of processing multi-letter graphemes

that is not captured by the whammying variable.

The idiosyncracies that these participants show do nothing to invalidate our results.

First, that participant A’s performance was similar to previous studies indicates that

nothing about our method was so unusual as to make the task different from other

studies. Second, case studies have long since (e.g., Plaut & Shallice, 1993) been sources of

data regarding visual word recognition; that we have no reason to believe these

individuals have suffered neurological damage does not excuse theories from explaining
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these individuals’ performance. Ultimately, models will come to quantitatively explain

both what differs between individuals and how individuals come to differ; however, to

do so, models must incorporate sensitivity to the same factors to which individuals are

sensitive.

What about the effects of practice?

The main effect of practice (i.e., one affecting all words equally) is assumed to be

within the grasp of models (by use of the average intercept over all sessions) by our

adjustment for session mean. However, one might expect that certain variables’

influences — particularly frequency’s — would vary with practice.

At first glance, it might seem that our data are critically contaminated with practice

effects, but in fact our data are less contaminated by practice than other studies for two

reasons. First, reading aloud is an overlearned task — used heavily in the early stages of

reading instruction — that is relatively immune to task-specific learning. As illustrated in

the first panel of Figure 2, there is no overall trend for response times to become shorter

with practice. Second, variability due to practice also exists in other databases because

individuals differ in how practiced they are at reading. For instance, in Spieler and

Balota’s (1997) data set, they averaged together 31 observations of each word, each

average containing one observation from each participant. In each of our four data sets,

for each word we have averaged together 50 observations from the same participants at

different points in time. On average, between one trial with a particular word and some

arbitrary9 other trial with that word, on average around 47,000 experimental trials — or

slightly fewer than the number of words in Slaughterhouse-Five — intervened. In

comparison to the differences in reading practice between one arbitrarily chosen

undergraduate and another, this one-novel’s-length difference seems quite minimal.

To be clear, by choosing to form each database from a single individual, we have
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chosen to move from having databases in which variability is contributed by trait

individual differences and potentially large inter-individual differences in practice to

having databases (one per subject) in which variability is contributed by smaller

intra-individual changes in practice over the course of the experiment, but not by trait

individual differences. Understanding such individual differences is, of course,

important, but individual differences are a distinct problem to the one considered here,

and so need studies of a different design to the present one (cf. Adelman et al., 2011).

As described above, we can only examine the variation in effects with practice for

those effects that are known, as we have done in Figure 2. The theoretical implications of1.2.2

the observed changes — such as whether the changes are stimulus-specific or

task-general (Dutilh, Krypotos, & Wagenmakers, 2011) — are beyond the scope of the

present paper, and the data are not optimal to examine this question, because there are no

unpracticed baseline items.

However, they do cause our noise estimate to be an overestimate, because a

replication could not contain all early or all late trials (whereas our simulated replications

could). We therefore removed the session variation by further adjusting the observed RTs

by interactions of the nine predictor variables with session number. The revised R2 targets

were higher by 0.01% for each participant. Whilst these practice effects are theoretically

important and will account for variance at the trial level, when models are assessed at the

level of item means, the additional stability provided by trends in practice is negligible.

What about sequential or priming effects?

From the viewpoint of a statistical criterion that averages RTs over different

occurrences of a word, any differences between different occurrences that do not

systematically recur are treated as noise; this includes effects that can be attributed to

properties of the preceding trial or trials — including priming and changes in pathway3.2
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control (cf. Reynolds & Besner, 2008) — when the order of trials is randomized.

Moreover, even in a statistical analysis that incorporates such sequential effects, their

inclusion does nothing to increase or decrease the estimated error of the observed mean

item RTs as estimates of the underlying mean item RTs (though it reduces the error in the

individual trial predictions). Model analyses can be used to attempt to remove these

influences, but estimates based on conforming to a particular statistical model may distort

the data in ways that it would be undesirable for cognitive models to attempt to mimic10.

This statistical point about sequential effects in a standard additive statistical model

(where the effects are calculated relative to the mean over the data set) does not detract

from the possibility that mechanistically sequential effects (which should be calculated

relative to some other baseline) do ultimately explain some of the item-level variance,

because they affect different items in different ways, that is, contribute a difference to the

average. For instance, if items are responded to faster when the preceding item shares a

contextual usage with them — a contextual priming effect — then items that occur in

many contexts would show an advantage (i.e., this is one possible explanation of the

contextual diversity effect shown by Adelman et al., 2006). This priming effect would

show up in both the item mean and trial-by-trial analyses; to the extent that an effect of

this type systematically shows up in the item means, it is included in our estimates of an

explicable effect. Only those priming (or other sequential) effects that associate with some

items more than others affect the item averages and so are considered to be open to a

model that predicts these items means (and therefore are included in our target R2s).

Whilst these kinds of effects are not responsible for the shortfall in R2, these data do

provide a unique resource for examining sequential and priming effects over long trial

sequences in reading.
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Word naming and reading

Word naming is but one task that is used to assess the processes of reading. Other2.6

tasks that are specifically focussed on word-level variables include lexical decisions and

perceptual identification. Higher level (e.g., grammatical) processing is often studied

with eye-tracking measures. Of course, our results need not generalize perfectly to these

other tasks. For instance, first phoneme is usually only found to be important for tasks

involving spoken production, and accessiblity measures like frequency have a much

stronger influence on lexical decision. Ideally, analogous data sets will become available

for these other tasks and measures.

Conclusion

Overall, the assessments reported here suggest that psychologists’ current

empirical and theoretical understanding of word naming is lacking. Our present

understanding of the relevant factors reveals less than half of what is systematically due

to word properties in word naming response times. Candidate areas for improvement2.4

include representations of semantics, visual similarity and articulatory duration, as well

as the inclusion of morphological information. However, it is unlikely that these account

for the majority of the remaining variance. In our opinion, it is likely that one or more

major factors is currently overlooked. Testing such new ideas and finding new effects will

be one of the major onward uses of these data. Neither practice nor sequential effects

should be expected to improve predictions of item mean RTs, only individual trial RTs,

and therefore would not substantially improve models on the criterion we use here.

Moreover, attempts to model response times directly have been approaching a target that

is simply far too low to be useful. That is, even if a model gave a detailed, quantitatively

accurate account of how currently known word-level factors affect response times, the

amount of variance systematically due to words but remaining unexplained would be so
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large as to render to the account uncompelling in our view. We hope the present data will

provide some of both the impetus and the information needed to approach these

unexplained properties of reading aloud; they give the most precise picture available of

reading aloud by individual participants. These data and the criteria that they establish

are critical for evaluating models of reading.
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Appendix

Collection of arousal and valence norms

Ratings were collected via Amazon Mechanical Turk (AMT), which is an online

crowd-sourcing platform that allows registered Requesters (e.g., researchers) to post tasks

for completion by registered Workers (e.g., research participants). AMT currently has

approximately 500,000 Workers in 190 countries around the world. It is ideal for the

collection of large-scale datasets in which participants provide many relatively simple

ratings. AMT has been used extensively by psychological researchers in recent years, and

its use has been validated (e.g., Buhrmester, Kwang, & Gosling, 2011).

Participants

Two-hundred sixty-four distinct participants contributed to our ratings. All

participants were registered by Amazon to be in the US, and completed a demographic

questionnaire that included a first language question; only those participants aged over

18 and responding English to this question were permitted to continue. Participants

whose ratings either were invariant or appeared random were excluded and replaced, so

that each of the 2820 words was rated by exactly 40 approved raters. Participants were

paid $0.05 (5 US cents) for every 10 words that they rated. As described below,

participants rated different numbers of words, at their discretion. Thus, payments ranged

from $0.05 to $14.10, with an average payment of $2.14 (SD = $3.31).

Stimuli and Design

The 2820 stimuli from the reading aloud experiment were split into 282 sets of 10

words. Each participant was permitted to rate as many or as few of these sets (without

repetition) as they wished, up to a total of 40 participants per set. Participants completed

between 1 and 282 sets (i.e., rated between 10 and 2820 words), with an average of 43 sets
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(430 words) per participant. On each presentation of a set, the order of the words within

that set was randomized.

Procedure

Participants who wished to take part in our study were instructed to complete a

demographic questionnaire, which contained questions about gender, age, religion,

income and first language, without being instructed as to the qualification criteria, which

were at least 18 years of age and first langauge English. Those meeting these criteria were

permitted to select to complete a task corresponding to a set of ten words. On this first

set, extended instructions were given, including examples of words of positive and

negative valence, and high and low arousal. Participants were instructed to use the whole

scale rather than just two or three different values, and to select the “don’t know” option

if they were unfamiliar with the given word. Depending on the browser software settings

used by the participant, this first set was identified as either the first time the relevant

page was visited (using the cookie mechanism) or when the page had not been reached

using the automatic get-next-task feature of AMT. Otherwise, a brief reminder of the

instructions was given that appeared with every set; in this case, an option was provided

to review the longer instructions.

Each word from the list appeared in bold lower-case print above the center of a

7-point arousal scale and a 7-point valence scale, each implemented using radio buttons.

A don’t know this word option appeared above each of these scales. Once an option had

been selected for both scales, a button below the scales was activated that allowed

participants to move to the next word. Once an option had been selected for both scales

for all ten words in the set, a button below the final scale was activated to allow

participants to submit their ratings to the AMT server. This then either returned the

participant to the list of available tasks, or — if the participant selected the appropriate
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option in the AMT interface — to the next set of ten words, which was selected randomly

without replacement.
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FOOTNOTES

1Such correlations simultaneously assess essentially all contrasts within the study,

including those on which current models differ and those on which they do not.

2Or practice, or priming, or other sequential effects that are treated as noise in a

typical experiment comparing some words with some other words. These contributions

are discussed in detail in the Discussion.

3M did not comply with this instruction on two sessions, once due to equipment

failure.

4There is reason to believe that more experienced readers are less sensitive to

neighborhood effects (Sears, Siakaluk, Chow, & Buchanan, 2008).

5Alternative forms were constructed using split halves from odd and even

double-sessions (i.e., sessions 1, 2, 5, 6, etc. vs. sessions 3, 4, 7, 8).

6We also calculated how low an R2 would suggest rejection of some fixed model in a

null-hypothesis significance test at the 5% level by taking the 5th percentile of the

simulated distribution; these values were D: 87.28%; A: 90.90%; M: 68.39.71%; U: 86.27%.

7Using 7 knots increased the R2 without modifying the qualitative patterns we

report, but with the introduction of nonmonotonicities in the predictions that were highly

uninterpretable.

8Neither simulations 2 nor simulation 3 was the best of the four Plaut et al. models

for any participant.

9This calculation is for an arbitrary other trial, not the next trial, since we are treating

pairs of sessions (with a single participant) in our experiment as analogous to pairs of

participants in a more typical experiment (who do not come in order from least to most

experienced): our pairs of the same participant are more similar than a pair of different

participants. The number of trials between subsequent trials with the same word might

be relevant to arguments about priming: The average number of trials intervening
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between one trial with a word and the next is, of course, 2819.

10In particular, the use of the best linear unbiased predictor for the random intercept

associated with each word in a mixed effects model is misleading because these values

reduce overall error by introducing bias at the item level, despite the impression the name

gives: Such predictors are only unbiased on average over all words; this usage of the term

unbiased is considered appropriate because they apply to random factors, which are not

intended to be examined individually (because their identity is not considered part of the

replicable experimental design by virtue of their designation as random).
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Correlate with other data set, e.g., Seidenberg & Plaut (1998), Sibley et al. (2009) ✔ ✘ — ✘ ✘

Squared intraclass correlation by Monte Carlo, Rey et al. (2009) ✔ ✘ — ✘ ✔

Intraclass correlation by Monte Carlo, Courrieu et al. (2011) ✔ ✘ — ✔ ✔

Comparison with regression, e.g., Spieler & Balota (1997), Adelman & Brown (2008) ✘ ✔ ✘ ✔ ✘

Participant-effect model (by either lmer or ANOVA) ✔ ✔ ✘ ✔ ✘

Present approach ✔ ✔ ✔ ✔ ✔

Table 1
Statistical assumptions that would ideally be avoided in the estimation of R2 targets for cognitive models and techniques of estimation (✔ =
avoided; ✘ = not avoided).. Participant-effect model describes estimates based on models with a (random) factor effect of each of participant
and item, plus (fixed) word-property effects and their (random) interaction with participants.
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Type of response Item mean response times (ms)

Correct, valid Incorrect, valid Invalid

Participant Phonological Visual Other Mean Std. Dev. Min. Max.

D 137,931 (97.82%) 597 (0.42%) 1,281 (0.91%) 93 (0.07%) 1,098 (0.78%) 498.7 35.8 428.0 872.6
A 135,050 (95.78%) 1,719 (1.22%) 1,925 (1.37%) 291 (0.21%) 2,015 (1.43%) 598.8 49.6 486.3 922.5
M 128,104 (90.85%) 442 (0.31%) 570 (0.40%) 113 (0.08%) 11,770 (8.35%) 681.8 46.1 526.4 1155.0
U 137,805 (97.73%) 323 (0.23%) 386 (0.27%) 72 (0.05%) 2,414 (1.71%) 473.2 37.1 387.3 701.1

Table 2
Discarded trials by participant and type, and summary statistics for response times. Percentages are row-wise. Phonological refers to errors
whose most plausible interpretation is that an orthographic segment has been read in a way that would be valid in another word (e.g., a
regularization). Visual refers to errors whose most plausible interpretation is that letters were misperceived. Other refers to errors that could
roughly equally plausibly be interpreted as either Visual or Phonological, or were most plausibly interpreted as mixed (e.g., Visual then
Phonological), or had no clear interpretation. Invalid trials include equipment failures (a sound card fault affected M), stutters (common for
U), absent (or very late) responses (common for M), and non-standard realization of the first phoneme (exchanges among /t/, /d/ and /θ/
were common for A, due to his accent).
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SB97 vs. new data D vs. A vs. M vs. U

Effect F(1, 2664) p F(3, 7990) p

Exception, Position 1 1.565 .211 3.557 .014
Exception, Position 2 6.245 .012 5.269 .001
Exception, Position 3 0.154 .695 2.550 .054

Phonographic N 75.690 < .0001 3.412 .017
Orthographic N− PhGr. N 28.164 < .0001 3.344 .018

Frequency (Exceptions) 5.406 .020 19.476 < .0001

Frequency (Regulars) 3.912 .048 38.778 < .0001

Length (Exceptions) 7.236 .007 16.648 < .0001

Length (Regulars) 11.669 .001 21.329 < .0001

Table 3
Comparison of data sets on participants on major word naming effects using the interaction between
data set/participant and the regression slope for each effect.
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(a) D A M U SB97 EL EL LDT BL LDT

D —
A 0.556 —
M 0.433 0.432 —
U 0.531 0.596 0.569 —

SB97 0.122 0.162 -0.144 -0.009 —
EL 0.032 0.132 -0.198 -0.001 0.562 —

EL LDT 0.188 0.245 0.056 0.135 0.302 0.429 —
BL LDT 0.220 0.263 0.058 0.153 0.281 0.394 0.677 —

(b) D A M U SB97 EL EL LDT BL LDT

D —
A 0.348 —
M 0.234 0.222 —
U 0.392 0.388 0.268 —

SB97 0.265 0.353 0.122 0.286 —
EL 0.337 0.419 0.130 0.323 0.506 —

EL LDT 0.315 0.318 0.077 0.226 0.363 0.494 —
BL LDT 0.332 0.338 0.075 0.236 0.364 0.466 0.677 —

Table 4
(a) Correlations between item mean RTs of each participant and previous mega-studies. (b) Partial
correlations after first phoneme between item mean RTs of each participant, and previous mega-
studies. SB97 refers to Spieler and Balota (1997) item means. EL refers to Elexicon Project (). BL
refers to British Lexicon Project. LDT indicates task is lexical decision, not naming.
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Total R2 Amount above baseline As %age of target

Type of model D A M U D A M U D A M U

Baseline: First phoneme alone 53.30 40.62 55.01 61.02 ← subtracted from baseline
(e.g., 87.96− 53.30 = 34.66)

Target from hypothetical correct model 87.96 91.63 69.81 87.17 34.66 51.01 14.80 26.15 ← divided by target
(e.g., 5.41/34.66 = .1560)

Regression models

log. frequency, length, N 58.71 46.95 56.07 63.03 5.41 6.43 1.06 2.02 15.60 12.61 7.16 7.72
Adelman & Brown’s (2008a) 17 predictors 61.78 53.36 59.58 67.65 8.48 12.74 4.57 6.62 24.46 24.98 30.87 23.32

all 31 predictors 65.61 56.41 60.08 68.80 12.31 15.79 5.07 7.78 35.52 30.95 34.26 29.75

Computational models

DRC 57.08 46.15 55.41 63.07 3.78 5.53 0.40 2.05 10.91 10.84 2.70 7.84
CDP+ 57.25 47.43 55.25 62.97 3.95 6.81 0.24 1.95 11.40 13.35 1.62 7.46

PMSP Simulation 1 55.53 44.86 56.05 63.49 2.23 4.24 1.04 2.47 6.43 8.31 7.03 9.45
PMSP Simulation 4 57.31 46.08 55.43 62.94 4.01 5.46 0.42 1.92 11.57 10.70 2.84 7.34

Table 5
Per participant R2 values (%) for hypothetical correct model, various regression equations and computational models. PMSP = Plaut et al.
(1996).
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Type of model Accessibility transformation and source D A M U

Regression models Polynomial (log.) CELEX 61.78 53.36 59.58 67.65

(Adelman & Brown’s, 2008a, 17 predictors) Cubic spline (log.) CELEX 61.86 53.52 59.58 67.64
” KF WF 61.17 52.77 59.33 66.77
” KF CD 61.48 52.68 59.30 66.67
” TASA WF 63.00 54.65 59.45 67.41
” TASA CD 63.22 54.60 59.46 67.34
” BNC WF 62.46 53.93 59.43 67.31
” BNC CD 62.83 53.91 59.40 67.27
” USENET WF 62.44 54.19 59.42 67.10
” USENET CD 62.64 53.95 59.44 67.06
” SUBTL WF 63.11 54.80 59.42 67.21
” SUBTL CD 63.20 54.67 59.44 67.16

Table 6
Per participant R2 values (%) for regressions using a variety of measures of frequency and contextual diversity. Corpora used are: CELEX
(Baayen, Piepenbrock, & Gulikers, 1995); the Brown corpus (KF: Kučera & Francis, 1967); the Touchstone Applied Science Associates
(TASA) corpus used by Zeno, Ivens, Millard, & Duvvuri (1995); the British National Corpus (BNC: British National Corpus Consortium,
2000); a USENET corpus (Shaoul & Westbury, 2009); and a film and television subtitle corpus (SUBTL: Brysbaert & New, 2009). Among
the 17-predictor regression models with the various accessibility measures from the corpora, the highest R2 (best measure) is highlighted in
bold.
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FIGURE CAPTIONS

Figure 1. Effect magnitudes (ms) for some key effects compared across the four

participants and Spieler and Balota’s (1997) data. Error bars represent 95% central

confidence intervals for the regression coefficients.

Figure 2. Per session RT and effect magnitudes (ms). Symbols represent estimates from

models with estimates of effect of first phoneme shared over all sessions. Lines represent

the loess (α = .667) smooth of these points to illustrate trends.
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